共查询到20条相似文献,搜索用时 0 毫秒
1.
Kentaro Takai Yasunao Inoue Yasuko Konishi Atsushi Suwa Yoshiharu Uruno Harumi Matsuda Tomokazu Nakako Mutsuko Sakai Hiroyuki Nishikawa Gakuji Hashimoto Takeshi Enomoto Atsushi Kitamura Yasuaki Uematsu Akihiko Kiyoshi Takaaki Sumiyoshi 《Bioorganic & medicinal chemistry letters》2013,23(16):4644-4647
We designed and synthesized N-substituted 8-azatetrahydroquinolone derivatives as selective M1 and M4 muscarinic acetylcholine receptors agonists. Optimization of selected derivatives led to the discovery of compound 7 as a highly potent M1 and M4 agonist with weak hERG inhibition. Oral administration of compound 7 improved psychosis-like behavior in rats. 相似文献
2.
Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity 总被引:4,自引:0,他引:4
Elevated synaptic levels of dopamine may induce striatal neurodegeneration in l-DOPA-unresponsive parkinsonism subtype of multiple system atrophy (MSA-P subtype), multiple system atrophy, and methamphetamine addiction. We examined the participation of dopamine and D1 dopamine receptors in the genesis of postsynaptic neurodegeneration. Chronic treatment of human SK-N-MC neuroblastoma cells with dopamine or H2O2 increased NO production and accelerated cytotoxicity, as indexed by enhanced nitrite levels and cell death. The antioxidant sodium metabisulfite or SCH 23390, a D1 dopamine receptor-selective antagonist, partially blocked dopamine effects but together ablated dopamine-mediated cytotoxicity, indicating the participation of both autoxidation and D1 receptor stimulation. Direct activation of D1 dopamine receptors with SKF R-38393 caused cytotoxicity, which was refractory to sodium metabisulfite. Dopamine and SKF R-38393 induced overexpression of the nitric-oxide synthase (NOS) isoforms neuronal NOS, inducible NOS (iNOS), and endothelial NOS in a protein kinase A-dependent manner. Functional studies showed that approximately 60% of total NOS activity was due to activation of iNOS. The NOS inhibitor N(G)-nitro-l-arginine methyl ester and genistein, wortmannin, or NF-kappaB SN50, inhibitors of protein tyrosine kinases phosphatidylinositol 3-kinase and NF-kappaB, respectively, reduced nitrite production by dopamine and SKF R-38393 but were less effective in attenuating H2O2-mediated effects. In rat striatal neurons, dopamine and SKF R-38393, but not H2O2, accelerated cell death through increased expression of neuronal NOS and iNOS but not endothelial NOS. These data demonstrate a novel pathway of dopamine-mediated postsynaptic oxidative stress and cell death through direct activation of NOS enzymes by D1 dopamine receptors and its associated signaling pathways. 相似文献
3.
Stimulation, by vasopressin and other agonists, of inositol-lipid breakdown and inositol phosphate accumulation in WRK 1 cells. 总被引:4,自引:2,他引:4 下载免费PDF全文
WRK 1 cells were labelled to equilibrium with 2-myo-[3H]inositol and stimulated with vasopressin. Within 3 s of hormone stimulation there was a marked accumulation of 3H-labelled InsP2 and InsP3 (inositol bis- and tris-phosphate), but not of InsP (inositol monophosphate). There was an associated, and rapid, depletion of 3H-labelled PtdInsP and PtdInsP2 (phosphatidylinositol mono- and bis-phosphates), but not of PtdIns (phosphatidylinositol), in these cells. Some 4% of the radioactivity in the total inositol lipid pool of WRK 1 cells was recovered in InsP2 and InsP3 after 10 s stimulation with the hormone. The selectivity of the vasopressin receptors of WRK 1 cells for a variety of vasopressin agonists and antagonists revealed these to be of the V1a subtype. There was no receptor reserve for vasopressin-stimulated inositol phosphate accumulation in WRK 1 cells. The accumulation of inositol phosphates was enhanced in the presence of Li+ions. Half-maximal accumulation of InsP, InsP2 and InsP3 in vasopressin-stimulated cells was observed with 0.9, 3.0 and 3.6 mM-Li+ respectively. Bradykinin and 5-hydroxytryptamine also provoked inositol phosphate accumulation in WRK 1 cells. The effects of sub-optimal concentrations of bradykinin and vasopressin upon inositol phosphate accumulation were additive, but those of optimal concentrations of the hormones were not. 相似文献
4.
This work investigated the capacity of alpha-lipoic acid (LA) and N-acetyl-L-cysteine (NAC) to reduce zinc deficiency-induced oxidative stress, and prevent the activation of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1), and the cross-talk between both activated cascades through beta-Transducin Repeat-containing Protein (beta-TrCP). IMR-32 cells were incubated in control media or media containing variable concentrations of zinc, without or with 0.5 mM LA or 1 mM NAC. Relative to control and zinc supplemented (15 microM Zn) groups, Hydrogen peroxide (H(2)O(2)) and total oxidant cell concentrations were higher, and total glutathione concentrations were lower in the zinc deficient groups (1.5 and 5 microM Zn). Both, LA and NAC, markedly reduced the increase in cell oxidants and the reduction in glutathione concentrations in the zinc deficient cells. Consistent with this, LA and NAC prevented zinc deficiency-induced activation of the early steps of NF- kappaB (IkappaBalpha phosphorylation) and AP-1 [c-Jun-N-terminal kinase (JNK) and p38 phophorylation] cascades, and the high NF-kappaB- and AP-1-DNA binding activities in total cell extracts. Thus, LA and NAC can reduce the oxidative stress associated with zinc deficiency and the subsequent triggering of NF-kappaB- and AP-1-activation in neuronal cells. 相似文献
5.
Jacob EdelsteinTianfeng Hao Qin CaoLeon Morales Patricia Rockwell 《Cellular signalling》2011,23(1):239-248
Muscarinic acetylcholine receptors (mAchRs) are guanosine nucleotide-binding protein (G protein) coupled receptors that crosstalk with receptor tyrosine kinases (RTKs) to signal mitogenic pathways. In particular, mAchRs are known to couple with RTKs for several growth factors to activate the mammalian target of rapamycin (mTOR)/Akt pathway, a regulator of protein synthesis. The RTK for the vascular endothelial growth factor (VEGF), VEGFR2, can signal protein synthesis but whether it cooperates with mAchRs to mediate mTOR activation has not been demonstrated. Using serum starved SK-N-SH neuroblastoma cells, we show that the muscarinic receptor agonists carbachol and pilocarpine enhance the activation of the mTOR substrate p70 S6 Kinase (S6K) and its target ribosomal protein S6 (S6) in a VEGFR2 dependent manner. Treatments with carbachol increased VEGFR2 phosphorylation, suggesting that mAchRs stimulate VEGFR2 transactivation to enhance mTOR signaling. Inhibitor studies revealed that phosphatidylinositol 3 kinase resides upstream from S6K, S6 and Akt phosphorylation while protein kinase C (PKC) functions in an opposing fashion by positively regulating S6K and S6 phosphorylation and suppressing Akt activation. Treatments with the phosphatase inhibitors sodium orthovanadate and okadaic acid increase S6, Akt and to a lesser extent S6K phosphorylation, indicating that tyrosine and serine/threonine dephosphorylation also regulates their activity. However, okadaic acid elicited a far greater increase in phosphorylation, implicating phosphatase 2A as a critical determinant of their function. Finally, pilocarpine but not carbachol induced a time and dose dependent cell death that was associated with caspase activation and oxidative stress but independent of S6K and S6 activation through VEGFR2. Accordingly, our findings suggest that mAchRs crosstalk with VEGFR2 to enhance mTOR activity but signal divergent effects on survival through alternate mechanisms. 相似文献
6.
Differentiation dependent expression of TRPA1 and TRPM8 channels in IMR‐32 human neuroblastoma cells
Lauri M. Louhivuori Genevieve Bart Kim P. Larsson Verna Louhivuori Johnny Näsman Tommy Nordström Ari‐Pekka Koivisto Karl E. O. Åkerman 《Journal of cellular physiology》2009,221(1):67-74
TRPA1 and TRPM8 are transient receptor potential (TRP) channels involved in sensory perception. TRPA1 is a non‐selective calcium permeable channel activated by irritants and proalgesic agents. TRPM8 reacts to chemical cooling agents such as menthol. The human neuroblastoma cell line IMR‐32 undergoes a remarkable differentiation in response to treatment with 5‐bromo‐2‐deoxyuridine. The cells acquire a neuronal morphology with increased expression of N‐type voltage gated calcium channels and neurotransmitters. Here we show using RT‐PCR, that mRNA for TRPA1 and TRPM8 are strongly upregulated in differentiating IMR‐32 cells. Using whole cell patch clamp recordings, we demonstrate that activators of these channels, wasabi, allyl‐isothiocyanate (AITC) and menthol activate membrane currents in differentiated cells. Calcium imaging experiments demonstrated that AITC mediated elevation of intracellular calcium levels were attenuated by ruthenium red, spermine, and HC‐030031 as well as by siRNA directed against the channel. This indicates that the detected mRNA level correlate with the presence of functional channels of both types in the membrane of differentiated cells. Although the differentiated IMR‐32 cells responded to cooling many of the cells showing this response did not respond to TRPA1/TRPM8 channel activators (60% and 90% for AITC and menthol respectively). Conversely many of the cells responding to these activators did not respond to cooling (30%). This suggests that these channels have also other functions than cold perception in these cells. Furthermore, our results suggest that IMR‐32 cells have sensory characteristics and can be used to study native TRPA1 and TRPM8 channel function as well as developmental expression. J. Cell. Physiol. 221: 67–74, 2009. © 2009 Wiley‐Liss, Inc 相似文献
7.
Using intracellular recording and immunohistochemistry, we studied the presynaptic muscarinic autoreceptor subtypes controlling ACh release in the neuromuscular junctions of the newborn (3-6 days postnatal) and adult (30-40 days) rat. In the Levator auris longus muscles of both newborn and adult rats, acetylcholine release was modified by the M1-receptor selective antagonists pirenzepine (10 microM) and MT-7 (100 nM) and by the M2-receptor selective antagonists methoctramine (1 microM) and AF-DX 116 (10 microM). The M4-receptor selective antagonists tropicamide (1 microM) and MT-3 (100 nM) can also modify the neurotransmitter release in certain synapses of the newborn muscles. The neurotransmitter release was not altered by the M3-receptor selective antagonist 4-DAMP (1 microM) in the adult or newborn rats. However, we directly demonstrate by immunocytochemistry the presence of these receptors in the motor endplates and conclude that M1-, M2-, M3- and M4-type muscarinic receptors are present in all the neuromuscular junctions of the rat muscle both in newborn and adult animals. These receptors may be located in the perisynaptic glial cell as well as at the nerve terminals. 相似文献
8.
M Waelbroeck J Camus M Tastenoy E Mutschler C Strohmann R Tacke G Lambrecht J Christophe 《Chirality》1991,3(2):118-123
(R)-Hexahydro-difenidol has a higher affinity for M1 receptors in NB-OK 1 cells, pancreas M3 and striatum M4 receptors (pKi 7.9 to 8.3) than for cardiac M2 receptors (pKi 7.0). (S)-Hexahydro-difenidol, by contrast, is nonselective (pKi 5.8 to 6.1). Our goal in the present study was to evaluate the importance of the hydrophobic phenyl, and cyclohexyl rings of hexahydro-difenidol for the stereoselectivity and receptor selectivity of hexahydro-difenidol binding to the four muscarinic receptors. Our results indicated that replacement of the phenyl ring of hexahydro-difenidol by a cyclohexyl group (----dicyclidol) and of the cyclohexyl ring by a phenyl moiety (----difenidol) induced a large (4- to 80-fold) decrease in binding affinity for all muscarinic receptors. Difenidol had a significant preference for M1, M3, and M4 over M2 receptors; dicyclidol, by contrast, had a greater affinity for M1 and M4 than for M2 and M3 receptors. The binding free energy decrease due to replacement of the phenyl and the cyclohexyl groups of (R)-hexahydro-difenidol by, respectively, a cyclohexyl and a phenyl moiety was almost additive in the case of M4 (striatum) binding sites. In the case of the cardiac M2, pancreatic M3, or NB-OK 1 M1 receptors the respective binding free energies were not completely additive. These results suggest that the four (R)-hexahydro-difenidol "binding moieties" (phenyl, cyclohexyl, hydroxy, and protonated amino group) cannot simultaneously form optimal interactions with the M1, M2, and M3 muscarinic receptors.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
L M Leeb-Lundberg S Cotecchia A DeBlasi M G Caron R J Lefkowitz 《The Journal of biological chemistry》1987,262(7):3098-3105
Continuous exposure of DDT1 MF-2 smooth muscle cells to 10-100 microM norepinephrine results in a dramatic attenuation of the ability of norepinephrine to stimulate inositol phospholipid hydrolysis via alpha 1-adrenergic receptors (alpha 1-AR). In addition to the functional desensitization, norepinephrine exposure also reduces the number of accessible cell surface alpha 1-AR as assayed by [3H]prazosin binding at 4 degrees C. Desensitization of the cells with norepinephrine results in an increase in the phosphorylation of the Mr 80,000 alpha 1-AR ligand binding peptide (2.4 +/- 0.2 mol of 32P per mol of alpha 1-AR; n = 5) when compared to control cells (1.1 +/- 0.1 mol of 32P per mol of alpha 1-AR; n = 5). The time courses of these three processes are all comparable being half-maximal within 1-2 min. These norepinephrine-promoted effects can be prevented by the alpha 1-AR receptor antagonist phentolamine indicating that they are mediated via the alpha 1-AR. Treatment of cells with the vasoactive peptide bradykinin (10 microM) induces desensitization of alpha 1-AR function similar to that induced by tumor-promoting phorbol ester treatment (Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., DeBernardis, J. F., Lefkowitz, R. J., and Caron, M. G. (1985) Proc. Natl. Acad. Sci. USA 82, 5651-5655). Both treatments also result in phosphorylation of the alpha 1-AR, with stoichiometries of 1.7 +/- 0.1 (bradykinin; n = 5) and 3.6 +/- 0.1 (PMA; n = 5) mol of 32P/mol of alpha 1-AR. However, neither phorbol esters nor bradykinin reduce the number of accessible cell surface alpha 1-AR. Similar phosphopeptide maps are obtained from tryptic phosphopeptides generated from phosphorylated alpha 1-AR derived from cells treated with norepinephrine, phorbol 12-myristate 13-acetate, and bradykinin. Phosphoamino acid analysis reveals that the various agents induce phosphorylation on both serine and threonine residues. Thus, phosphorylation of receptors linked to the inositol phospholipid/Ca2+ signaling pathway may represent an important mechanism of regulation of receptor responsiveness. 相似文献
10.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014,1843(12):3004-3017
Gq/11-coupled muscarinic acetylcholine receptors (mAChRs) belonging to M1, M3 and M5 subtypes have been shown to activate the metabolic sensor AMP-activated protein kinase (AMPK) through Ca2 +/calmodulin-dependent protein kinase kinase-β (CaMKKβ)-mediated phosphorylation at Thr172. However, the source of Ca2 + required for this response has not been yet elucidated. Here, we investigated the involvement of store-operated Ca2 + entry (SOCE) in AMPK activation by pharmacologically defined M3 mAChRs in human SH-SY5Y neuroblastoma cells. In Ca2 +-free medium the cholinergic agonist carbachol (CCh) caused a transient increase of phospho-Thr172 AMPK that rapidly ceased within 2 min. Conversely, in the presence of extracellular Ca2 + CCh-induced AMPK phosphorylation lasted for at least 180 min. The SOCE modulator 2-aminoethoxydiphephenyl borate (2-APB), at a concentration (50 μM) that suppressed CCh-induced intracellular Ca2 + ([Ca2 +]i) plateau, inhibited CCh-induced AMPK phosphorylation. CCh triggered the activation of the endoplasmic reticulum Ca2 + sensor stromal interaction molecule (STIM) 1, as indicated by redistribution of STIM1 immunofluorescence into puncta, and promoted the association of STIM1 with the SOCE channel component Orai1. Cell depletion of STIM1 by siRNA treatment reduced both CCh-induced [Ca2 +]i plateau and AMPK activation. M3 mAChRs increased glucose uptake and this response required extracellular Ca2 + and was inhibited by 2-APB, STIM1 knockdown, CaMKKβ and AMPK inhibitors, and adenovirus infection with dominant negative AMPK. Thus, the study provides evidence that SOCE is required for sustained activation of AMPK and stimulation of downstream glucose uptake by M3 mAChRs and suggests that SOCE is a critical process connecting M3 mAChRs to the control of neuronal energy metabolism. 相似文献
11.
C Delporte J Winand P Poloczek E Brunko M Tastenoy M Waelbroeck J Christophe 《Biochimica et biophysica acta》1992,1135(3):323-329
ATP dose-dependently inhibited rat 125I-ANP-(99-126) binding to membranes from the human neuroblastoma cell line NB-OK-1 by increasing the KD value for the hormone without altering the Bmax value. After a 20 min preincubation with 37.5 pM 125I-ANP-(99-126) and 0.5 mM ATP, followed by the addition of 0.3 microM unlabelled ANP-(99-126), the proportion of rapidly dissociating receptors was 4-times higher than in the absence of ATP. The other nucleotides ADP, AMP, AMP-PNP, ATP gamma S, GTP, GDP, GMP, GMP-PNP and GTP gamma S were also inhibitory but with a lower potency and/or efficacy. Binding equilibrium data were satisfactorily simulated by a computer program based on partially competitive binding of ANP-(99-126) and the nucleotides, and this, together with the data on dissociation kinetics, strongly suggests that several nucleotides, when added at concentrations up to 1 mM, form a ternary ANP-receptor-nucleotide complex. 相似文献
12.
K Seuwen C Kahan T Hartmann J Pouyssegur 《The Journal of biological chemistry》1990,265(36):22292-22299
13.
The mechanisms whereby P2-purinergic receptors for extracellular ATP are coupled to the inositol phospholipid-signaling system were studied in the HL60 human promyelocytic leukemia cell line. Brief pretreatment of either undifferentiated or differentiated HL60 cells with various activators of protein kinase C Ca2+/phospholipid-dependent enzyme (e.g. phorbol myristate acetate) produced a 50-fold decrease in the potency of extracellular ATP to induce mobilization of intracellular Ca2+. The ATP-induced increase in rate of inositol trisphosphate (InsP3) accumulation in these 4-beta-phorbol 12-myristate-13-acetate-treated cells was characterized by a 40% decrease in the maximal rate of InsP3 accumulation. Incubation of the cells with NaF also induced mobilization of the same Ca2+ stores released in response to extracellular ATP; this provided indirect evidence that the transmembrane signaling actions of P2-purinergic receptors may be mediated by GTP-binding regulatory proteins. This latter possibility was further supported by the finding that treatment of either undifferentiated or differentiated HL60 cells with pertussis toxin produced a significant, but partial, inhibition of ATP-induced signaling actions. These included: 1) a 60-70% decrease in the maximum rate of InsP3 accumulation, and 2) a 1.5 log unit increase in the half-maximally effective [ATP] required for mobilization of intracellular Ca2+. In cells treated with both pertussis toxin and 4-beta-phorbol 12-myristate-13-acetate, there was an 80% decrease in maximal rate of ATP-induced InsP3 accumulation and near-complete inhibition of ATP-induced Ca2+ mobilization. Significantly, the residual, pertussis toxin-insensitive portion of ATP-induced signaling was observed in the same samples of differentiated HL60 cells wherein pertussis toxin treatment produced complete abolition of InsP3 accumulation and Ca2+ mobilization in response to occupation of chemotactic peptide receptors. These results indicate that the activation of inositol phospholipid breakdown by P2-purinergic receptors in HL60 cells may be mediated by both pertussis toxin-sensitive and toxin-insensitive mechanisms; this suggests that these myeloid progenitor cells may express two distinct types of GTP-binding proteins coupled to phospholipase C. 相似文献
14.
15.
Activation of adenosine A1 and A2A receptors modulates dopamine D2 receptor-induced responses in stably transfected human neuroblastoma cells 总被引:1,自引:0,他引:1
Salim H Ferré S Dalal A Peterfreund RA Fuxe K Vincent JD Lledo PM 《Journal of neurochemistry》2000,74(1):432-439
Adenosine can influence dopaminergic neurotransmission in the basal ganglia via postsynaptic interaction between adenosine A2A and dopamine D2 receptors. We have used a human neuroblastoma cell line (SH-SY5Y) that was found to express constitutively moderate levels of adenosine A1 and A2A receptors (approximately 100 fmol/mg of protein) to investigate the interactions of A2A/D2 receptors, at a cellular level. After transfection with human D2L receptor cDNA, SH-SY5Y cells expressed between 500 and 1,100 fmol of D2 receptors/mg of protein. In membrane preparations, stimulation of adenosine A2A receptors decreased the affinity of dopamine D2 receptors for dopamine. In intact cells, the calcium concentration elevation induced by KCI treatment was moderate, and dopamine had no effect on either resting intracellular free Ca2+ concentration ([Ca2+]i) or KCI-induced responses. In contrast, pretreatment with adenosine deaminase for 2 days dramatically increased the elevation of [Ca2+]i evoked by KCI, which then was totally reversed by dopamine. The effects induced by 48-h adenosine inactivation were mimicked by application of adenosine A1 antagonists and could not be further reversed by acute activation of either A1 or A2A receptors. Acute application of the selective A2 receptor agonist CGS-21680 counteracted the D2 receptor-induced [Ca2+]i responses. The present study shows that SH-SY5Y cells are endowed with functional adenosine A2A and A1 receptors and that A2A receptors exert an antagonistic acute effect on dopamine D2 receptor-mediated functions. In contrast, A1 receptors induce a tonic modulatory role on these dopamine functions. 相似文献
16.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins for heterotrimeric G proteins. One of the best-studied RGS proteins, RGS4, accelerates the rate of GTP hydrolysis by all G(i) and G(q) alpha subunits yet has been shown to exhibit receptor selectivity. Although RGS4 is expressed primarily in brain, its effect on modulating the activity of serotonergic receptors has not yet been reported. In the present study, transfected BE(2)-C human neuroblastoma cells expressing human 5-HT(1B) receptors were used to demonstrate that RGS4 can inhibit the coupling of 5-HT(1B) receptors to cellular signals. Serotonin and sumatriptan were found to stimulate activation of extracellular signal-regulated kinase. This activation was attenuated, but not completely inhibited, by RGS4. Similar inhibition by RGS4 of the protein kinase Akt was also observed. As RGS4 is expressed at high levels in brain, these results suggest that it may play a role in regulating serotonergic pathways. 相似文献
17.
18.
Lam PM Hainsworth AH Smith GD Owen DE Davies J Lambert DG 《Journal of neurochemistry》2007,102(3):801-811
The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand-gated, Ca(2+)-permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH-SY5Y(hTRPV1)). SH-SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca(2+)](i) with potency (EC(50)) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 micromol/L, respectively. The putative endovanilloid N-arachidonoyl-dopamine increased [Ca(2+)](i) but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca(2+)](i) were inhibited by the TRPV1 antagonists capsazepine and iodo-resiniferatoxin with potencies (K(B)) of approximately 70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre-labelled [(3)H]noradrenaline from monolayers of SH-SY5Y(hTRPV1) cells with an EC(50) of 0.6 nmol/L indicating amplification between [Ca(2+)](i) and release. In a perfusion system, we simultaneously measured [(3)H]noradrenaline release and [Ca(2+)](i) and observed that increased [Ca(2+)](i) preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC(50) 155 nmol/L) that was antagonist-sensitive and mirrored the [Ca(2+)](I) response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non-neuronal cells and native neuronal cultures. The advantage of SH-SY5Y(hTRPV1) is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells. 相似文献
19.
R Efremov M J Truong E C Darcissac J Zeng O Grau G Vergoten C Debard A Capron G M Bahr 《European journal of biochemistry》1999,263(3):746-756
Chemokine receptors (CRs) are 7-helix membrane proteins from the family of G-protein coupled receptors (GPCRs). A few human CRs act as cofactors for macrophage-tropic (M-tropic) human immunodeficiency virus type-1 (HIV-1) entry into cells, while others do not. In this study, we describe an application of molecular modeling techniques to delineate common molecular determinants that might be related to coreceptor activity, and the use of the data to identify other GPCRs as putative cofactors for M-tropic HIV-1 entry. Subsequently, the results were confirmed by an experimental approach. The sequences of extracellular domains (ECDs) of CRs were employed in a compatibility search against a database of environmental profiles derived for proteins with known spatial structure. The best-scoring sequence-profile alignments obtained for each ECD were compared in pairs to check for common patterns in residue environments, and consensus sequence-profile fits for ECDs were also derived. Similar hydrophobicity motifs were found in the first extracellular loops of the CRs CCR5, CCR3, and CCR2B, and are all used by M-tropic HIV-1 for cell entry. In contrast, other CRs did not reveal common motifs. However, the same environmental pattern was also delineated in the first extracellular loop of some human GPCRs showing either high (group 1) or low (group 2) degree of similarity of their polarity patterns with those in HIV-1 coreceptors. To address the question of whether the delineated molecular determinant plays a critical role in the receptor-virus binding, three of the identified GPCRs, bradykinin receptor (BRB2) and G-protein receptor (GPR)-CY6 from group 1, and GPR8 from group 2, were cloned and transfected into HeLa-CD4 cells, which are nonpermissive to M-tropic HIV-1 infection. We demonstrate that, similar to CCR5, the two selected GPCRs from group 1 were capable of mediating M-tropic HIV-1 entry, whereas GPR8 from group 2 did not serve as HIV-1 coreceptor. The potential biological significance of the identified structural motif shared by the human CCR5, CCR3, CCR2B and other GPCRs is discussed. 相似文献
20.
In order to evaluate the possible contribution of phospholipase D (PLD) stimulation to the mitogenic response, a screening of a variety of different compounds, some of which are known to be potent mitogens, was performed using the well characterized Chinese hamster lung fibroblast (CCL39) cell line. In wild type CCL39 cells, or derivatives expressing high levels of either the human M1 muscarinic receptor (Hm1) or the human epidermal growth factor (EGF) receptor (39M1-81 and 39ER22 clones, respectively), thrombin, a potent mitogen for all three cell types, elicited the rapid activation of PLD (t1/2 activation, 30 s). Carbachol-mediated activation of the Hm1 receptor in the 39M1-81 clone, which is not a mitogenic signal, produced a similarly rapid although greater activation of PLD. Addition of EGF to the 39ER22 clone was able to provoke both a mitogenic response and stimulate PLD, albeit a comparatively small effect. In each case, the stimulation of PLD correlated closely with the ability to stimulate inositol phospholipid breakdown and was entirely dependent on the activation of protein kinase C. Moreover, the ability of both thrombin and carbachol to stimulate PLD was found to be rapidly desensitized, with a similar time course of desensitization (t1/2 desensitization, 90 s). It has recently been reported that an increase in phospholipase C (PLC)-mediated phosphocholine (PC) hydrolysis by either addition of agonist or by extracellular addition of PC-specific PLC enzyme constitutes a mitogenic signal. In this regard, in addition to stimulation of PLD, thrombin and carbachol were both able to stimulate the activity of a phosphocholine-specific phospholipase C (PC-PLC), which did not appear to desensitize within the time course employed. By contrast, EGF was unable to elicit the stimulation of PC-PLC. Ligands such as fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF), which bind to and activate receptors with intrinsic tyrosine kinase activity, are potent mitogens for CCL39 cells but were unable to stimulate either PLD or PC-PLC activity. Furthermore, exogenous addition of purified PC-PLC enzyme, although able to induce a strong and lasting hydrolysis of PC, was unable to produce a mitogenic signal on its own. On the basis of these results, we conclude that the activation of both PLD and PC-PLC is neither sufficient nor required to produce a mitogenic response. 相似文献