首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

2.
A genetic epidemiological study has been carried out in eight raions (districts) of Rostov oblast (region) of Russia: Tsimlyansk, Volgodonskoi, Tselina, Egorlykskaya, Millerovo, Tarasovskaya, Rodionovo-Nesvetaiskaya, and Matveevo-Kurgan raions. The population structure (the parameters of the isolation by distance model, ethnic assortative marriage, random inbreeding (F ST), endogamy index, and ie) and the genetic demographic characteristics of the regional population (vital statistics, Crow’s index, and its components) have been analyzed. The total sample size was 320 925 subjects (including 114 106 and 206 816 urban and rural residents, respectively). The load of the main types of Mendelian diseases (autosomal dominant (AD), autosomal recessive (AR), and X-linked diseases) has been calculated for the total sample from eight districts and separately for the urban and rural populations. Substantial differences between individual districts in the AD and AR genetic loads have been found, especially upon separation into urban and rural samples. The results of correlation analysis suggest that migration and genetic drift are the main factors of genetic differentiation of populations with respect to the prevalence of hereditary diseases.  相似文献   

3.
An integrated medical genetic an population genetic study has been performed in two raions (administrative districts) of the Tver oblast (region) of Russia: the Udomlya raion located in the zone affected by the Kalininskaya Nuclear Power Plant and the Ostashkov raion, which served as a control district. No significant differences has been found with respect to the genetic parameters studied. The values of these parameters in the populations of the town of Udomlya, the town of Ostashkov, the Udomlya raion, and the Ostashkov raion, respectively, are the following: random inbreeding, 0.00006, 0.00011, 0.000167, and 0.000366; endogamy index, 0.05, 0.43, 0.30, and 0.42; local inbreeding, 0.0003, 0.00045, 0.0009, and 0.0011; the degree of isolation by distance, 0.0003, 0.00045, 0.0009, and 0.0005; sigma, 2098, 1338, 1473, and 1189; the load of autosomal dominant (AD) diseases, 0.71, 0.92, 0.92, and 1.37; the load of autosomal recessive (AR) diseases, 0.68, 0.69, 0.67, and 0.82; and the load of X-linked diseases, 0.18, 0.64, 0.83, and 0.27.  相似文献   

4.
Microsatellite markers are commonly used for population genetic analyses of livestock. However, up to now, combinations of microsatellite data sets or comparison of population genetic parameters from different studies and breeds has proven difficult. Often different genotyping methods have been employed, preventing standardization of microsatellite allele calling. In other cases different sets of markers have been genotyped, providing differing estimates of population genetic parameters. Here, we address these issues and illustrate a general two-step regression approach in cattle using three different sets of microsatellite data, to combine population genetics estimates of diversity and admixture. This regression-based method is independent of the loci genotyped but requires common breeds in the data sets. We show that combining microsatellite data sets can provide new insights on the origin and geographical distribution of genetic diversity and admixture in cattle, which will facilitate global management of this livestock species.  相似文献   

5.
Reduced population size is thought to have strong consequences for evolutionary processes as it enhances the strength of genetic drift. In its interaction with selection, this is predicted to increase the genetic load, reduce inbreeding depression, and increase hybrid vigor, and in turn affect phenotypic evolution. Several of these predictions have been tested, but comprehensive studies controlling for confounding factors are scarce. Here, we show that populations of Daphnia magna, which vary strongly in genetic diversity, also differ in genetic load, inbreeding depression, and hybrid vigor in a way that strongly supports theoretical predictions. Inbreeding depression is positively correlated with genetic diversity (a proxy for Ne), and genetic load and hybrid vigor are negatively correlated with genetic diversity. These patterns remain significant after accounting for potential confounding factors and indicate that, in small populations, a large proportion of the segregation load is converted into fixed load. Overall, the results suggest that the nature of genetic variation for fitness‐related traits differs strongly between large and small populations. This has large consequences for evolutionary processes in natural populations, such as selection on dispersal, breeding systems, ageing, and local adaptation.  相似文献   

6.
Inbreeding depression is a key factor affecting the persistence of natural populations, particularly when they are fragmented. In species with mixed mating systems, inbreeding depression can be estimated at the population level by regressing the average progeny fitness by the selfing rate of their mothers. We applied this method using simulated populations to investigate how population genetic parameters can affect the detection power of inbreeding depression. We simulated individual selfing rates and genetic loads from which we computed fitness values. The regression method yielded high statistical power, inbreeding depression being detected as significant (5?% level) in 92?% of the simulations. High individual variation in selfing rate and high mean genetic load led to better detection of inbreeding depression while high among-individual variation in genetic load made it more difficult to detect inbreeding depression. For a constant sampling effort, increasing the number of progenies while decreasing the number of individuals per progeny enhanced the detection power of inbreeding depression. We discuss the implication of among-mother variability of genetic load and selfing rate on inbreeding depression studies.  相似文献   

7.
吴国凯 《遗传学报》2002,29(9):841-846
遗传负荷表示种群由于遗传变异能力的存在而在平均适宜度上的损失,定量讨论各种遗传负荷,对研究现实发生水平上的物种进化具有重要意义,以往的遗传负荷理论从种群平衡出发,探讨现实发生水平上的物种进化,可是,进化是种群平衡的位移;这便构成了理论与现实之间的矛盾,为拓展以往的遗传负荷理论,给出了一个描述各种遗传负荷的普适理论框架,利用这个理论框架既能探讨平衡种群的遗传负荷,又能模写非平衡种群的遗传负荷及其变化,从而克服了以往的遗传负荷理论不能描述非平衡种群和不时与生物进化现实相悖的不足之处,为研究物种的进化提供了一种可靠的模拟方法。  相似文献   

8.
In populations or species with low fitness (high genetic load), a new management strategy called genetic rescue has been advocated to help avoid extinction. In this strategy, unrelated individuals from another population are introduced into the population with low fitness in an effort to reduce genetic load. Here we present ten guidelines that can be used to evaluate when genetic rescue is a good management option, the appropriate procedures for genetic rescue planning and management, and the potential negative genetic consequences of genetic rescue. These guidelines are then used to evaluate the genetic rescue aspects of the recovery programs for the Mexican wolf and the Florida panther.  相似文献   

9.
Genetic variability and drift load in populations of an aquatic snail   总被引:4,自引:0,他引:4  
Abstract Population genetic theory predicts that in small populations, random genetic drift will fix and accumulate slightly deleterious mutations, resulting in reduced reproductive output. This genetic load due to random drift (i.e., drift load) can increase the extinction risk of small populations. We studied the relationship between genetic variability (indicator of past population size) and reproductive output in eight isolated, natural populations of the hermaphroditic snail Lymnaea stagnalis . In a common laboratory environment, snails from populations with the lowest genetic variability mature slower and have lower fecundity than snails from genetically more variable populations. This result suggests that past small population size has resulted in increased drift load, as predicted. The relationship between genetic variability and reproductive output is independent of the amount of nonrandom mating within populations. However, reproductive output and the current density of snails in the populations were not correlated. Instead, data from the natural populations suggest that trematode parasites may determine, at least in part, population densities of the snails.  相似文献   

10.
Mukai T 《Genetics》1980,94(1):169-184
Recent reports (Mukaiet al. 1974; Katz and Cardellino 1978; Cockerham and Mukai 1978) have indicated that the Cy chromosome is not always dominant over its homologous chromosome with respect to viability. Thus, the genetic parameters previously estimated using viabilities determined by the Cy method are biased. In the present paper, the biases of the estimates for the polygenic mutation rate, the degree of dominance and the homozygous load are examined. The results indicate that the biases for the mutation rate and the degree of dominance are small and that the estimate of the homozygous load relative to the average viability of the population is not biased.  相似文献   

11.
Summary The Kota of Nilgiri Hills, Tamilnadu, are an isolated tribal population and occupy the lowest stratum in the local social hierarchy. They have developed an economic symbiotic relationship with other tribes of the Nilgiri Hills (e.g., Toda, Kurumba, Badaga), but have almost no social relationship with other communities, such as the Hindu and Muslim, communities, etc. The total population of the Kota is about 1200. Consanguineous marriages are highly favoured in this group.This paper presents data on prenatal, infant and adolescent mortality in relation to the degree of inbreeding. No perceptible difference has been found in mortality figures between consanguineous and non-consanguineous marriages. This may be due to the long history of inbreeding among the Kota. No case of visible congenital malformation has been noticed.The estimates of genetic load as revealed by inbreeding data indicate that genetic load in the Kota is low (perhaps about 1 lethal equivalent per gamete); it is also low in comparison with that in other Indian populations.  相似文献   

12.
In this work, the process of colonization of North and South America by the species Drosophila subobscura has been studied by analyzing the variability of lethal genes. The genetic structures of a Palearctic natural central population (Bordils, Spain) and a colonizer population from America (Gilroy, California) have been compared. The frequencies of lethal chromosomes and their allelism are 29.007% and 0.0069 in the first population and 14.414% and 0.0526 in the American population. A founder effect is detected after the computation of some population parameters (Ne, h, he and the lethal load). Furthermore, the allelism of lethal chromosomes has revealed a strong association between a lethal gene and the O5 inversion both in Gilroy and in the population of Puerto Montt (Chile). The interpopulation allelism shows that the O5 arrangement from the USA and Chile is the same, confirming that the colonizing processes of North and South America are correlated. The O5 arrangement can also be useful as a genetic marker to trace the origin of the colonization. The frequency of the O5 arrangement in the original population of the colonization could be used to estimate the number of colonizers. This population is still unknown, but taking the extreme values of the frequency of the O5 inversion in natural Palearctic populations (1–15%), the number of colonizers could vary between 9 and 149 individuals.  相似文献   

13.
An integrated medical genetic an population genetic study has been performed in two raions (administrative districts) of the Tver oblast (region) of Russia: the Udomlya raion located in the zone affected by the Kalininskaya Nuclear Power Plant and the Ostashkov raion, which served as a control district. No significant differences has been found with respect to the genetic parameters studied. The values of these parameters in the populations of the town of Udomlya, the town of Ostashkov, the Udomlya raion, and the Ostashkov raion, respectively, are the following: random inbreeding, 0.00006, 0.00011, 0.000167, and 0.000366; endogamy index, 0.05, 0.43, 0.30, and 0.42; local inbreeding, 0.0003, 0.00045, 0.0009, and 0.0011; the degree of isolation by distance, 0.0003, 0.00045, 0.0009, and 0.0005; , 2098, 1338, 1473, and 1189; the load of autosomal dominant (AD) diseases, 0.71, 0.92, 0.92, and 1.37; the load of autosomal recessive (AR) diseases, 0.68, 0.69, 0! .67, and 0.82; and the load of X-linked diseases, 0.18, 0.64, 0.83, and 0.27.  相似文献   

14.
Sexual selection on males is predicted to increase population fitness, and delay population extinction, when mating success negatively covaries with genetic load across individuals. However, such benefits of sexual selection could be counteracted by simultaneous increases in genome-wide drift resulting from reduced effective population size caused by increased variance in fitness. Resulting fixation of deleterious mutations could be greatest in small populations, and when environmental variation in mating traits partially decouples sexual selection from underlying genetic variation. The net consequences of sexual selection for genetic load and population persistence are therefore likely to be context dependent, but such variation has not been examined. We use a genetically explicit individual-based model to show that weak sexual selection can increase population persistence time compared to random mating. However, for stronger sexual selection such positive effects can be overturned by the detrimental effects of increased genome-wide drift. Furthermore, the relative strengths of mutation-purging and drift critically depend on the environmental variance in the male mating trait. Specifically, increasing environmental variance caused stronger sexual selection to elevate deleterious mutation fixation rate and mean selection coefficient, driving rapid accumulation of drift load and decreasing population persistence times. These results highlight an intricate balance between conflicting positive and negative consequences of sexual selection on genetic load, even in the absence of sexually antagonistic selection. They imply that environmental variances in key mating traits, and intrinsic genetic drift, should be properly factored into future theoretical and empirical studies of the evolution of population fitness under sexual selection.  相似文献   

15.
Genetic disorders in children and young adults: a population study.   总被引:16,自引:3,他引:13       下载免费PDF全文
The data base of an ongoing population-based registry with multiple sources of ascertainment was used to estimate the present population load from genetic disease in more than 1 million consecutive live births. It was found that, before approximately age 25 years, greater than or equal to 53/1,000 live-born individuals can be expected to have diseases with an important genetic component. This total was composed of single-gene disorders (3.6/1,000), consisting of autosomal dominant (1.4/1,000), autosomal recessive (1.7/1,000), and X-linked recessive disorders (0.5/1,000). Chromosomal anomalies accounted for 1.8/1,000, multifactorial disorders (including those present at birth and those of onset before age 25 years) accounted for 46.4/1,000, and cases of genetic etiology in which the precise mechanism was not identified accounted for 1.2/1,000. Previous studies have usually considered all congenital anomalies (ICD 740-759) as part of the genetic load, but only those judged to fit into one of the above categories were included in the present study. Data for congenital anomalies are therefore also presented separately, to facilitate comparison with earlier studies. If all congenital anomalies are considered as part of the genetic load, then greater than or equal to 79/1,000 live-born individuals have been identified as having one or other genetic disorder before approximately age 25 years. These new data represent a better estimate of the genetic load in the population than do previous studies.  相似文献   

16.
Medical genetic study of the population of Altai Republic (Russia) has been performed. The population sample comprises 203 148 subjects, including 59 196 Altaians, 134 972 Russians, and 8980 Kazakhs. For each nosological group, the loads of Mendelian pathology with different modes of inheritance and their prevalence rates in urban and rural populations have been determined. Thirty-six autosomal dominant (AD) diseases have been found in a total of 121 subjects, with hereditary syndromes being the most prevalent. Autosomal recessive (AR) pathology is represented by 24 diseases found in 158 subjects, with metabolic disorders being the most prevalent; and X-linked pathology, by four diseases in nine subjects. The prevalence rate has been calculated for each nosological form in the district where it has been found. The loads of AD, AR, and X-linked pathologies in the urban population were, respectively, 2.98 and 9.62 per 1000 people and 0.56 per 1000 men in Altaians; 0.86 and 0.94 per 1000 people and 0.23 per 1000 men in Russians; 0.34 and 1.16 per 1000 people in Kazakhs. In the rural population, the genetic load has been calculated for each district. The spectrum of hereditary pathology in the populations studied is described.  相似文献   

17.
We study the effects of a population bottleneck on the inbreeding depression and genetic load caused by deleterious mutations in an outcrossing population. The calculations assume that loci have multiplicative fitness effects and that linkage disequilibrium is negligible. Inbreeding depression decreases immediately after a sudden reduction of population size, but the drop is at most only several percentage points, even for severe bottlenecks. Highly recessive mutations experience a purging process that causes inbreeding depression to decline for a number of additional generations. On the basis of available parameter estimates, the absolute fall in inbreeding depression may often be only a few percentage points for bottlenecks of 10 or more individuals. With a very high lethal mutation rate and a very slow population growth, however, the decline may be on the order of 25%. We examine when purging might favor a switch from outbreeding to selfing and find it occurs only under very limited conditions unless population growth is very slow. In contrast to inbreeding depression, a bottleneck causes an immediate increase in the genetic load. Purging causes the load to decline and then overshoot its equilibrium value. The changes are typically modest: the absolute increase in the total genetic load will be at most a few percentage points for bottlenecks of size 10 or more unless the lethal mutation rate is very high and the population growth rate very slow.  相似文献   

18.
桂宏胜  杨丽  李生斌 《遗传》2007,29(12):1443-1148
STR作为遗传多态性较高的标记, 被广泛地运用于群体遗传学的研究。对于STR分型产生的基因型频率及等位基因频率数据, 文章总结了各种参数指标的计算及分析方法。其中参数指标包括杂合度、多态信息量、连锁不平衡系数、近交系数、遗传距离以及固定指数等; 分析方法包括主成分分析、系统发生树、分子方差分析、R矩阵、地理信息系统以及空间自相关分析。通过这些参数指标及分析方法的使用, 可以既直观又科学地揭示群体遗传结构、群体间遗传分化以及人类起源与进化等群体遗传学中研究的关键问题。  相似文献   

19.
Integrated study of the genetic structure of the Udmurt population with respect to different genetic systems has been performed. Data on the genes of genetic diseases, abiotic parameters analyzed by population statistic methods, and DNA polymorphism are summarized. The populations of six raions (districts) of Udmurt Republic (the Mozhga, Malaya Purga, Sharkan, Debesy, Igra, and Glazov raions) have been studied. The total population studied was 267 655 people (an urban population of 150 119 people and a rural population of 117 536 people), including 155 346 Udmurts. The population structure has been studied in six districts on the basis of the vital statistics, Crow’s indices, Malecot’s isolation by distance parameters, ethnically assortative marriage parameters, endogamy indices, inbreeding-endogamy (ie) indices, and frequencies of the genotype and allele frequencies of four DNA markers (17 alleles). The prevalences of hereditary diseases have been calculated for different population groups: urban and rural populations, Udmurts and other ethnic groups. These groups, especially the urban and rural populations, substantially differed from one another in the prevalences of autosomal dominant (AD) and autosomal recessive (AR) diseases. The correlation between the prevalence of AD and AR diseases and the ie index is positive and significant. The spectrum of hereditary diseases detected in six districts of Udmurtia comprises 149 diseases (80, 57, and 12 AD, AR, and X-linked diseases, respectively). Accumulation of individual diseases in districts of Udmurtia and accumulation of diseases in Udmurtia as compared to regions studied earlier has been found. Cluster analysis of the frequencies of genes of AD and AR diseases and DNA markers has determined the gene geographic position of Udmurts.  相似文献   

20.
If, because of genetic erosion, the level of homozygosity in small populations is high, additional selfing will result in small reductions of fitness. In addition, in small populations with a long inbreeding history selection may have purged the population of its genetic load. Therefore, a positive relationship between population size (or level of genetic variation) and level of additional inbreeding depression, here referred to as inbreeding load, may be expected. In a previous study on the rare and threatened perennial Salvia pratensis, a positive correlation between population size and level of allozyme variation has been demonstrated. In the present study, the inbreeding load in six populations of varying size and allozyme variation was investigated. In the greenhouse, significant inbreeding load in mean seed weight, proportion of germination, plant size, regenerative capacity, and survival was demonstrated. In a field experiment with the two largest and the two smallest populations, survival of selfed progeny was 16% to 63% lower than survival of outcrossed progeny. In addition, survival of outcrossed progeny was, with the exception of the largest population, lower (16% to 37%) than of hybrid progeny, resulting from crosses between populations. Effects on plant size were qualitatively similar to the effects on survival, but these effects were variable in time because of differential survival of larger individuals. In all populations the total inbreeding load, that is, the effects on size and survival multiplicated, increased in time. It was demonstrated that inbreeding load in different characters may be independent. At no time and for no character was inbreeding load or the heterosis effect correlated to the mean number of alleles per locus, indicating that allozyme variation is not representative for variation at fitness loci in these populations. Combined with results of previous investigations, these results suggest that the small populations are in an early phase of the genetic erosion process. In this phase, allozyme variation, which is supposed to be (nearly) neutral, has been affected by genetic erosion but the selectively nonneutral variation is only slightly affected. These results stress the need for detailed information about the inbreeding history of small populations. The relative performance of selfed progeny was lowest in all populations, in the greenhouse as well as in the field, and inbreeding depression could still influence the extinction probabilities of the small populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号