首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Tu  D J Tobias    M L Klein 《Biophysical journal》1995,69(6):2558-2562
We report a constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal (L alpha) phase bilayer of dipalmitoylphosphatidylcholine at 50 degrees C and 28 water molecules/lipid. We have shown that the bilayer is stable throughout the 1550-ps simulation and have demonstrated convergence of the system dimensions. Several important aspects of the bilayer structure have been investigated and compared favorably with experimental results. For example, the average positions of specific carbon atoms along the bilayer normal agree well with neutron diffraction data, and the electron density profile is in accord with x-ray diffraction results. The hydrocarbon chain deuterium order parameters agree reasonably well with NMR results for the middles of the chains, but the simulation predicts too much order at the chain ends. In spite of the deviations in the order parameters, the hydrocarbon chain packing density appears to be essentially correct, inasmuch as the area/lipid and bilayer thickness are in agreement with the most refined experimental estimates. The deuterium order parameters for the glycerol and choline groups, as well as the phosphorus chemical shift anisotropy, are in qualitative agreement with those extracted from NMR measurements.  相似文献   

2.
Membrane electroporation is the method to directly transfer bioactive substances such as drugs and genes into living cells, as well as preceding electrofusion. Although much information on the microscopic mechanism has been obtained both from experiment and simulation, the existence and nature of possible intermediates is still unclear. To elucidate intermediates of electropore formation by direct comparison with measured prepore formation kinetics, we have carried out 49 atomistic electroporation simulations on a palmitoyl-oleoyl-phosphatidylcholine bilayer for electric field strengths between 0.04 and 0.7 V/nm. A statistical theory is developed to facilitate direct comparison of experimental (macroscopic) prepore formation kinetics with the (single event) preporation times derived from the simulations, which also allows us to extract an effective number of lipids involved in each pore formation event. A linear dependency of the activation energy for prepore formation on the applied field is seen, with quantitative agreement between experiment and simulation. The distribution of preporation times suggests a four-state pore formation model. The model involves a first intermediate characterized by a differential tilt of the polar lipid headgroups on both leaflets, and a second intermediate (prepore), where a polar chain across the bilayer is formed by 3-4 lipid headgroups and several water molecules, thereby providing a microscopic explanation for the polarizable volume derived previously from the measured kinetics. An average pore radius of 0.47 ± 0.15 nm is seen, in favorable agreement with conductance measurements and electrooptical experiments of lipid vesicles.  相似文献   

3.
Reconstruction and interpretation of lipid bilayer structure from X-ray scattering often rely on assumptions regarding the molecular distributions across the bilayer. It is usually assumed that changes in head-head spacings across the bilayer, as measured from electron density profiles, equal the variations in hydrocarbon thicknesses. One can then determine the structure of a bilayer by comparison to the known structure of a lipid with the same headgroup. Here we examine this procedure using simulated electron density profiles for the benchmark lipids DMPC and DPPC. We compare simulation and experiment in both real and Fourier space to address two main aspects: (i) the measurement of head-head spacings from relative electron density profiles, and (ii) the determination of the absolute scale for these profiles. We find supporting evidence for the experimental procedure, thus explaining the robustness and consistency of experimental structural results derived from electron density profiles. However, we also expose potential pitfalls in the Fourier reconstruction that are due to the limited number of scattering peaks. Volumetric analysis of simulated bilayers allows us to propose an improved, yet simple method for scale determination. In this way we are able to remove some of the restrictions imposed by limited scattering data in constructing reliable electron density profiles.  相似文献   

4.
A molecular, mean-field theory of chain packing statistics in aggregates of amphiphilic molecules is applied to calculate the conformational properties of the lipid chains comprising the hydrophobic cores of dipalmitoyl-phosphatidylcholine (DPPC), dioleoyl-phosphatidylcholine (DOPC), and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers in their fluid state. The central quantity in this theory, the probability distribution of chain conformations, is evaluated by minimizing the free energy of the bilayer assuming only that the segment density within the hydrophobic region is uniform (liquidlike). Using this distribution we calculate chain conformational properties such as bond orientational order parameters and spatial distributions of the various chain segments. The lipid chains, both the saturated palmitoyl (-(CH2)14-CH3) and the unsaturated oleoyl (-(CH2)7-CH = CH-(CH2)7-CH3) chains are modeled using rotational isomeric state schemes. All possible chain conformations are enumerated and their statistical weights are determined by the self-consistency equations expressing the condition of uniform density. The hydrophobic core of the DPPC bilayer is treated as composed of single (palmitoyl) chain amphiphiles, i.e., the interactions between chains originating from the same lipid headgroup are assumed to be the same as those between chains belonging to different molecules. Similarly, the DOPC system is treated as a bilayer of oleoyl chains. The POPC bilayer is modeled as an equimolar mixture of palmitoyl and oleoyl chains. Bond orientational order parameter profiles, and segment spatial distributions are calculated for the three systems above, for several values of the bilayer thickness (or, equivalently, average area/headgroup) chosen, where possible, so as to allow for comparisons with available experimental data and/or molecular dynamics simulations. In most cases the agreement between the mean-field calculations, which are relatively easy to perform, and the experimental and simulation data is very good, supporting their use as an efficient tool for analyzing a variety of systems subject to varying conditions (e.g., bilayers of different compositions or thicknesses at different temperatures).  相似文献   

5.
We have determined the molecular structures of commonly used phosphatidylglycerols (PGs) in the commonly accepted biologically relevant fluid phase. This was done by simultaneously analyzing small angle neutron and X-ray scattering data, with the constraint of measured lipid volumes. We report the temperature dependence of bilayer parameters obtained using the one-dimensional scattering density profile model - which was derived from molecular dynamics simulations - including the area per lipid, the overall bilayer thickness, as well as other intrabilayer parameters (e.g., hydrocarbon thickness). Lipid areas are found to be larger than their phosphatidylcholine (PC) counterparts, a result likely due to repulsive electrostatic interactions taking place between the charged PG headgroups even in the presence of sodium counterions. In general, PG and PC bilayers show a similar response to changes in temperature and chain length, but differ in their response to chain unsaturation. For example, compared to PC bilayers, the inclusion of a first double bond in PG lipids results in a smaller incremental change to the area per lipid and bilayer thickness. However, the extrapolated lipid area of saturated PG lipids to infinite chain length is found to be similar to that of PCs, an indication of the glycerol-carbonyl backbone's pivotal role in influencing the lipid-water interface.  相似文献   

6.
A multiscale modeling approach is applied for simulations of lipids and lipid assemblies on mesoscale. First, molecular dynamics simulation of initially disordered system of lipid molecules in water within all-atomic model was carried out. On the next stage, structural data obtained from the molecular dynamics (MD) simulation were used to build a coarse-grained (ten sites) lipid model, with effective interaction potentials computed by the inverse Monte Carlo method. Finally, several simulations of the coarse-grained model on longer length- and time-scale were performed, both within Monte Carlo and molecular dynamics simulations: a periodical sample of lipid molecules ordered in bilayer, a free sheet of such bilayer without periodic boundary conditions, formation of vesicle from a plain membrane, process of self-assembly of lipids randomly dispersed in volume. It was shown that the coarse-grained model, developed exclusively from all-atomic simulation data, reproduces well all the basic features of lipids in water solution.  相似文献   

7.
A potential energy function for unsaturated hydrocarbons is proposed and is shown to agree well with experiment, using molecular dynamics simulations of a water/octene interface and a dioleoyl phosphatidylcholine (DOPC) bilayer. The simulation results verify most of the assumptions used in interpreting the DOPC experiments, but suggest a few that should be reconsidered. Comparisons with recent results of a simulation of a dipalmitoyl phosphatidylcholine (DPPC) lipid bilayer show that disorder is comparable, even though the temperature, hydration level, and surface area/lipid for DOPC are lower. These observations highlight the dramatic effects of unsaturation on bilayer structure.  相似文献   

8.
A series of all-atom molecular dynamics simulations has been performed to evaluate the contributions of various functional groups to the free energy of solvation in water and a dipalmitoylphospatidylcholine lipid bilayer membrane and to the free energies of solute transfer (Delta(DeltaG(o))X) from water into the ordered-chain interior of the bilayer. Free energies for mutations of the alpha-H atom in p-toluic acid to six different substituents (-CH3, -Cl, -OCH3, -CN, -OH, -COOH) were calculated by a combined thermodynamic integration and perturbation method and compared to literature results from vapor pressure measurements, partition coefficients, and membrane transport experiments. Convergence of the calculated free energies was indicated by substantial declines in standard deviations for the calculated free energies with increased simulation length, by the independence of the ensemble-averaged Boltzmann factors to simulation length, and the weak dependence of hysteresis effects on simulation length over two different simulation lengths and starting from different initial configurations. Calculated values of Delta(DeltaG(o))X correlate linearly with corresponding values obtained from lipid bilayer transport experiments with a slope of 1.1 and from measurements of partition coefficients between water and hexadecane or decadiene, with slopes of 1.1 and 0.9, respectively. Van der Waals interactions between the functional group of interest and the acyl chains in the ordered chain region account for more than 95% of the overall potential energy of interaction. These results support the view that the ordered chain region within the bilayer interior is the barrier domain for transport and that solvation interactions within this region resemble those occurring in a nonpolar hydrocarbon.  相似文献   

9.
A novel protocol has been developed for comparing the structural properties of lipid bilayers determined by simulation with those determined by diffraction experiments, which makes it possible to test critically the ability of molecular dynamics simulations to reproduce experimental data. This model-independent method consists of analyzing data from molecular dynamics bilayer simulations in the same way as experimental data by determining the structure factors of the system and, via Fourier reconstruction, the overall transbilayer scattering-density profiles. Multi-nanosecond molecular dynamics simulations of a dioleoylphosphatidylcholine bilayer at 66% RH (5.4 waters/lipid) were performed in the constant pressure and temperature ensemble using the united-atom GROMACS and the all-atom CHARMM22/27 force fields with the GROMACS and NAMD software packages, respectively. The quality of the simulated bilayer structures was evaluated by comparing simulation with experimental results for bilayer thickness, area/lipid, individual molecular-component distributions, continuous and discrete structure factors, and overall scattering-density profiles. Neither the GROMACS nor the CHARMM22/27 simulations reproduced experimental data within experimental error. The widths of the simulated terminal methyl distributions showed a particularly strong disagreement with the experimentally observed distributions. A comparison of the older CHARMM22 with the newer CHARMM27 force fields shows that significant progress is being made in the development of atomic force fields for describing lipid bilayer systems empirically.  相似文献   

10.
Quantitative structures are obtained at 30 degrees C for the fully hydrated fluid phases of palmitoyloleoylphosphatidylcholine (POPC), with a double bond on the sn-2 hydrocarbon chain, and for dierucoylphosphatidylcholine (di22:1PC), with a double bond on each hydrocarbon chain. The form factors F(qz) for both lipids are obtained using a combination of three methods. (1) Volumetric measurements provide F(0). (2) X-ray scattering from extruded unilamellar vesicles provides /F(qz)/ for low q(z). (3) Diffuse X-ray scattering from oriented stacks of bilayers provides /F(qz)/ for high q(z). Also, data using method (2) are added to our recent data for dioleoylphosphatidylcholine (DOPC) using methods (1) and (3); the new DOPC data agree very well with the recent data and with (4) our older data obtained using a liquid crystallographic X-ray method. We used hybrid electron density models to obtain structural results from these form factors. The result for area per lipid (A) for DOPC 72.4 +/- 0.5 A(2) agrees well with our earlier publications, and we find A = 69.3 +/- 0.5 A2 for di22:1PC and A = 68.3 +/- 1.5 A2 for POPC. We obtain the values for five different average thicknesses: hydrophobic, steric, head-head, phosphate-phosphate and Luzzati. Comparison of the results for these three lipids and for our recent dimyristoylphosphatidylcholine (DMPC) determination provides quantitative measures of the effect of unsaturation on bilayer structure. Our results suggest that lipids with one monounsaturated chain have quantitative bilayer structures closer to lipids with two monounsaturated chains than to lipids with two completely saturated chains.  相似文献   

11.
Molecular dynamics (MD) simulations complement experimental methods in studies of the structure and dynamics of lipid bilayers. The choice of algorithms employed in this computational method represents a trade-off between the accuracy and real calculation time. The largest portion of the simulation time is devoted to calculation of long-range electrostatic interactions. To speed-up evaluation of these interactions, various approximations have been used. The most common ones are the truncation of long-range interactions with the use of cut-offs, and the particle-mesh Ewald (PME) method. In this study, several multi-nanosecond cut-off and PME simulations were performed to establish the influence of the simulation protocol on the bilayer properties. Two bilayers were used. One consisted of neutral phosphatidylcholine molecules. The other was a mixed lipid bilayer consisting of neutral phosphatidylethanolamine and negatively charged phosphatidylglycerol molecules. The study shows that the cut-off simulation of a bilayer containing charge molecules generates artefacts; in particular the mobility and order of the charged molecules are vastly different from those determined experimentally. In the PME simulation, the bilayer properties are in general agreement with experimental data. The cut-off simulation of bilayers containing only uncharged molecules does not generate artefacts, nevertheless, the PME simulation gives generally better agreement with experimental data.  相似文献   

12.
Ig H chain V regions using the VH81X gene segment were PCR amplified from genomic DNA obtained from either splenic B cells or surface (s)Ig- bone marrow cells of BALB/c mice. Sequence analysis demonstrated that 93% of VH81X containing H chain V region genes in splenic B cells were rearranged nonproductively. Furthermore, 74% of rearrangements of VH81X among sIg- bone marrow cells were nonproductive. This contrasts with previous results obtained for rearrangements of members of the VH36-60 gene segment family among sIg- cells wherein, as a consequence of extensive clonal expansion after productive H chain V gene rearrangement, 80% of rearrangements were productive. The low proportion of productive rearrangements of VH81X is interpreted as indicating that most productive rearrangements of VH81X cannot facilitate clonal expansion, which would support the hypothesis that selection for clonal expansion and maturation is dependent on the amino acid sequence of nascent H chains. Additionally, because most productive rearrangements of VH81X cannot facilitate clonal maturation but do appear to mediate allelic exclusion, these processes are likely to be regulated independently.  相似文献   

13.
Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine bilayers (8-fold), and the linear relationship between in f and sigma established for liquid-crystalline bilayers was no longer followed. However, in both gel and liquid-crystalline phases in f was found to exhibit an inverse correlation with free surface area (in f = -0.31 - 29.1/af, where af is the average free area (in square angstroms) per lipid molecule). Thus, the lipid bilayer permeability of acetic acid can be predicted from the relevant chain-packing properties in the bilayer (free surface area), regardless of whether chain ordering is varied by changes in temperature, lipid chain length, cholesterol concentration, or bilayer phase structure, provided that temperature effects on permeant dehydration and diffusion and the chain-length effects on bilayer barrier thickness are properly taken into account.  相似文献   

14.
The structure and molecular packing density of a "mismatched" solute, 1-hexanol, in lipid membranes of dimyristoyl phosphatidylcholine (DMPC) was studied by molecular dynamics simulations. We found that the average location and orientation of the hexanol molecules matched earlier experimental data on comparable systems. The local density or molecular packing in DMPC-hexanol was elucidated through the average Voronoi volumes of all heavy (non-hydrogen) atoms. Analogous analysis was conducted on trajectories from simulations of pure 1-hexanol and pure (hydrated) DMPC bilayers. The results suggested a positive volume change, DeltaV(m), of 4 cm(3) mol(-1) hexanol partitioned at 310 K in good accordance with experimental values. Analysis of the apparent volumes of each component in the pure and mixed states further showed that DeltaV(m) reflects a balance between a substantial increase in the packing density of the alcohol upon partitioning and an even stronger loosening in the packing of the lipid. Furthermore, analysis of Voronoi volumes along the membrane normal identifies a distinctive depth dependence of the changes in molecular packing. The outer (interfacial) part of the lipid acyl chains (up to C8) is stretched by about 4%. Concomitantly, the average lateral area per chain decreases and these two effects compensate so that the overall packing density in the outer region, where the hexanol molecules are located, remains practically constant. The core of the bilayer (C9-C13) is slightly thinned. The average lateral area per chain in this region expands, resulting in a looser packing density. The net effect in the core is a 2-3% decrease in density corresponding to a total volume increase of approximately 14 cm(3) mol(-1) hexanol partitioned.  相似文献   

15.
The heavy chain variable region genes of 5 human polyreactive mAbs generated in our laboratory have been cloned and sequenced using polymerase chain reaction(PCR) technique.We found that 2 and 3 mAbs utilized genes of the VHIV and VHⅢ families,respectively.The former 2 VH segments were in germline configuration.A common VH segment,with the best similarity of 90.1% to the published VHⅢ germline genes,was utilized by 2 different rearranged genes encoding the V regions of other 3 mAbs.This strongly suggests that the common VH segment is a unmutated copy of an unidentified germline VHⅢ gene.All these polyreactive mAbs displayed a large NDN region(VH-D-JH junction).The entire H chain V regions of these polyreactive mAbs are unusually basic.The analysis of the charge properties of these mAbs as well as those of other poly-and mono-reactive mAbs from literatures prompts us to propose that the charged amino acids with a particular distribution along the H chain V region,especially the binding sites(CDRs),may be an important structural feature involved in antibody polyreactivity.  相似文献   

16.
A molecular dynamics (MD) simulation of the fully hydrated bilayer made of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and containing beta-carotene (beta-Car) molecules was carried out as a complementary approach to experimental techniques to investigate the orientation of beta-Car in the lipid membrane as well as its influence on the bilayer properties. The bilayer reached thermal equilibrium after 1200 ps of MD simulation and the productive run was carried out for 2800 ps. The results indicate that the carotene rings are located in the region occupied by the carbonyl groups of the POPC gamma-chain with no trace of penetration towards the centre of the bilayer. Carotene exhibits an ordering effect on both the beta- and the gamma-chain. While the fully saturated gamma-chain is affected evenly along, the order of the mono-unsaturated beta-chain is modified mainly below the double bond. In general, a high value of the order parameter and the chain tilt in the range from 11.4 degrees to 26.7 degrees were observed for the beta-Car molecules. However, for chain segment adjacent to methyl groups the value of the order parameter is low and the tilt angle is close to 75 degrees . Moreover, the probability of trans conformation being generally close to 1.0 along the beta-Car chain is reduced for these segments. Our MD simulation study suggests two pools of the preferential orientation of beta-Car: a slightly bent structure corresponding to a small chain tilt angle and a rather stretched structure that corresponds to a higher chain tilt. The results are discussed in the light of experimental findings.  相似文献   

17.
A molecular dynamics simulation of a fully hydrated model membrane consisting of 12 molecules of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine, one amphiphilic peptide with the sequence acetyl-Lys-Lys-Gly-Leu(16)-Lys-Lys-Ala-amide, and 593 water molecules was performed for 1.06 ns (Belohorcova, K., J. H. Davis, T. B. Woolf, and B. Roux. 1997. Biophys. J. 73:3039-3055). The analysis presented here is primarily focused on the phospholipid component and the results are compared with experimental (2)H-NMR studies of the lipid component of mixtures of the same peptide and lipid at a molar ratio of 1:32, and with earlier studies of closely related peptide/lipid mixtures. The phospholipid chain and headgroup isomer populations and isomerization rates compare favorably with previous simulations and experimental measurements. Of particular interest is the effect of the peptide on the phospholipid headgroup and hydrocarbon chain orientational order calculated from the simulation, which also agree well with experimental measurements performed on this and closely related systems. Comparison of the experimental results with the simulations not only shows that there is significant agreement between the two methods, but also provides new insight into the effect of the peptide on the lipid dynamics. In particular, these results confirm that a membrane spanning peptide has little effect on lipid chain order, and bilayer thickness if its hydrophobic length closely matches the lipid hydrocarbon thickness. In addition, we find that the peptide can have a strong ordering effect if it is longer than the lipid hydrophobic thickness.  相似文献   

18.
The performance of the GROMOS96 parameter set 45A3 developed for aliphatic alkanes is tested on a bilayer of dipalmitoylphosphatidylcholine (DPPC) in water in the liquid-crystalline L(alpha) phase. Variants of the force-field parameter set as well as different sets of simulation conditions or simulation parameter sets are evaluated. In the case of the force-field parameters, the van der Waals constants for the non-bonded interaction of the ester carbonyl carbon and the partial charges and charge group definition of the phosphatidylcholine head group are examined. On the methodological side, different cut-off distances for the non-bonded interactions, use of a reaction-field force due to long-range electrostatic interactions, the frequency of removal of the centre of mass motion and the strength of the coupling of the pressure of the system to the pressure bath are tested. The area per lipid, as a measure of structure, the order parameters of the chain carbons, as a measure of membrane fluidity, and the translational diffusion of the lipids in the plane of the bilayer are calculated and compared with experimental values. An optimal set of simulation parameters for which the GROMOS96 parameter set 45A3 yields a head group area, chain order parameters and a lateral diffusion coefficient in accordance with the experimental data is listed.  相似文献   

19.
The structure of a fully hydrated mixed (saturated/polyunsaturated) chain lipid bilayer in the biologically relevant liquid crystalline phase has been examined by performing a molecular dynamics study. The model membrane, a 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC, 18:0/22:6 PC) lipid bilayer, was investigated at constant (room) temperature and (ambient) pressure, and the results obtained in the nanosecond time scale reproduced quite well the available experimental data. Polyunsaturated fatty acids are found in high concentrations in neuronal and retinal tissues and are essential for the development of human brain function. The docosahexaenoic fatty acid, in particular, is fundamental for the proper function of the visual receptor rhodopsin. The lipid bilayer order has been investigated through the orientational order parameters. The water-lipid interface has been explored thoroughly in terms of its dimensions and the organization of the different components. Several types of interactions occurring in the system have been analyzed, specifically, the water-hydrocarbon chain, lipid-lipid and lipid-water interactions. The distribution of dihedral angles along the chains and the molecular conformations of the polyunsaturated chain of the lipids have also been studied. Special attention has been focused on the microscopic (molecular) origin of the effects of polyunsaturations on the different physical properties of membranes.  相似文献   

20.
BALB/c mice immunized with phosphocholine-conjugated keyhole limpet hemocyanin respond with two major groups of antibodies that differ with respect to fine specificity and idiotype. Group I antibodies predominantly bear the T15 idiotype, and show appreciable affinity for the haptens PC and nitrophenyl PC (NPPC), whereas group II antibodies have appreciable affinity for NPPC only and are T15 idiotype negative. Previous studies indicated that group II binding characteristics may derive from the use of novel V gene segments not observed in group I antibodies. To determine the nature of VH gene usage in the group II antibody response, we examined the VH region of a prototype group II hybridoma, PCG1-1. The nucleotide sequence obtained from the VDJ region indicates that PCG1-1 utilizes a VH gene not observed in the group I response, one that belongs to the Q52 VH family. The PCG1-1 VH nucleotide sequence shares 97% identity with the myeloma M141 VH gene. In addition, PCG1-1 utilizes a D segment most closely related to DSP2.6 rearranged to JH-3. These data indicate that M141, a VH gene not seen in group I anti-PC antibodies is utilized by PCG1-1 to generate a PC-protein-binding group II antibody. PCG1-1 was previously shown to express the V kappa 1-3 light chain, a characteristic shared by several group II hybridomas. Furthermore, here we examined the VH gene rearrangements in four lambda 1-bearing group II hybridomas that share a common JH rearrangement with PCG1-1 by Southern blot analysis. A VH-specific probe that detects M141 VH rearrangements revealed that all four lambda 1 hybridomas as well as PCG1-1 share an identical VH gene rearrangement to JH-3. Thus the M141 VH gene product is able to utilize two distinct light chains to generate group II-like combining sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号