首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A bifurcation analysis of neuronal subthreshold oscillations.   总被引:3,自引:0,他引:3       下载免费PDF全文
J A White  T Budde    A R Kay 《Biophysical journal》1995,69(4):1203-1217
  相似文献   

2.
T L Wimpey  C Chavkin 《Neuron》1991,6(2):281-289
Opioid receptors were found to activate two different types of membrane potassium conductance in acutely dissociated neurons from the CA1/subiculum regions of the adult rat hippocampal formation. Opioid-responsive neurons were distinguished based on their morphology and electrophysiological responses. In one population of neurons having a multipolar, nonpyramidal cell shape, mu-selective opioid agonists increased an inward rectifying potassium current. Opioid activation of the inward rectifying conductance resulted in small outward potassium currents at resting membrane potentials and increased inward currents at hyperpolarized potentials. In a second population of nonpyramidal neurons, mu opioid agonists increased a novel voltage-gated potassium current. This current was blocked by internal CsCl2, unaffected by external BaCl2 or CdCl2, irreversibly activated by intracellular GTP-gamma-S, and inactivated by sustained depolarization. In contrast to the inward rectifying conductance, the voltage-gated conductance was not activated at resting membrane potentials or hyperpolarized potentials. The opioid-activated, voltage-gated conductance represents a new class of G protein-regulated potassium current in the brain.  相似文献   

3.
Neuronal oscillatory activity is generated by a combination of ionic currents, including at least one inward regenerative current that brings the cell towards depolarized voltages and one outward current that repolarizes the cell. Such currents have traditionally been assumed to require voltage-dependence. Here we test the hypothesis that the voltage dependence of the regenerative inward current is not necessary for generating oscillations. Instead, a current I NL that is linear in the biological voltage range and has negative conductance is sufficient to produce regenerative activity. The current I NL can be considered a linear approximation to the negative-conductance region of the current–voltage relationship of a regenerative inward current. Using a simple conductance-based model, we show that I NL , in conjunction with a voltage-gated, non-inactivating outward current, can generate oscillatory activity. We use phase-plane and bifurcation analyses to uncover a rich variety of behaviors as the conductance of I NL is varied, and show that oscillations emerge as a result of destabilization of the resting state of the model neuron. The model shows the need for well-defined relationships between the inward and outward current conductances, as well as their reversal potentials, in order to produce stable oscillatory activity. Our analysis predicts that a hyperpolarization-activated inward current can play a role in stabilizing oscillatory activity by preventing swings to very negative voltages, which is consistent with what is recorded in biological neurons in general. We confirm this prediction of the model experimentally in neurons from the crab stomatogastric ganglion.  相似文献   

4.
Interstitial cystitis (IC) is an idiopathic condition characterized by bladder hyperalgesia. Studies have shown cytokine and purinergic signaling abnormalities in cultured bladder urothelial cells (BUC) from IC patients. We performed single-cell electrophysiological studies in both normal and IC BUC. A strongly inward rectifying potassium current with conductance of the Kir2.1 channel was identified in normal BUC. This current was significantly reduced in IC BUC. Kir2.1 protein and mRNA were detected in both IC and normal BUC. Epidermal growth factor (EGF) caused a dose-dependent decrease in the inward potassium current in normal BUC. EGF is secreted in higher amounts by IC BUC and is known to decrease Kir2.1 conductance by phosphorylation of Kir2.1. Genistein, a nonspecific phosphorylation inhibitor, increased the inward potassium current in IC BUC and blocked the effect of EGF on normal BUC. Treatment of IC BUC with heparin-binding epidermal growth factor-like growth factor (HB-EGF), previously shown to be secreted in lower amounts by IC BUC, significantly increased inward potassium current. These data show that the inward potassium current in BUC can be modulated by EGF and HB-EGF. Changes in BUC membrane potassium conductance caused by altered levels of EGF and HB-EGF may therefore play a role in the pathophysiology of IC.  相似文献   

5.
Dissection of a model for neuronal parabolic bursting   总被引:9,自引:0,他引:9  
We have obtained new insight into the mechanisms for bursting in a class of theoretical models. We study Plant's model [24] for Aplysia R-15 to illustrate our view of these so-called parabolic bursters, which are characterized by low spike frequency at the beginning and end of a burst. By identifying and analyzing the fast and slow processes we show how they interact mutually to generate spike activity and the slow wave which underlies the burst pattern. Our treatment is essentially the first step of a singular perturbation approach presented from a geometrical viewpoint and carried out numerically with AUTO [12]. We determine the solution sets (steady state and oscillatory) of the fast subsystem with the slow variables treated as parameters. These solutions form the slow manifold over which the slow dynamics then define a burst trajectory. During the silent phase of a burst, the solution trajectory lies approximately on the steady state branch of the slow manifold and during the active phase of spiking, the trajectory sweeps through the oscillation branch. The parabolic nature of bursting arises from the (degenerate) homoclinic transition between the oscillatory branch and the steady state branch. We show that, for some parameter values, the trajectory remains strictly on the steady state branch (to produce a resting steady state or a pure slow wave without spike activity) or strictly in the oscillatory branch (continuous spike activity without silent phases). Plant's model has two slow variables: a calcium conductance and the intracellular free calcium concentration, which activates a potassium conductance. We also show how bursting arises from an alternative mechanism in which calcium inactivates the calcium current and the potassium conductance is insensitive to calcium. These and other biophysical interpretations are discussed.  相似文献   

6.
The electrical activity of endocrine pituitary cells is mediated by a plethora of ionic currents and establishing the role of a single channel type is difficult. Experimental observations have shown however that fast-activating voltage- and calcium-dependent potassium (BK) current tends to promote bursting in pituitary cells. This burst promoting effect requires fast activation of the BK current, otherwise it is inhibitory to bursting. In this work, we analyze a pituitary cell model in order to answer the question of why the BK activation must be fast to promote bursting. We also examine how the interplay between the activation rate and conductance of the BK current shapes the bursting activity. We use the multiple timescale structure of the model to our advantage and employ geometric singular perturbation theory to demonstrate the origin of the bursting behaviour. In particular, we show that the bursting can arise from either canard dynamics or slow passage through a dynamic Hopf bifurcation. We then compare our theoretical predictions with experimental data using the dynamic clamp technique and find that the data is consistent with a burst mechanism due to a slow passage through a Hopf.  相似文献   

7.
A model of bursting activity in the RPal neuron of the snailHelix pomatia has been developed. In this model, calcium conductances do not play a key role in generation of slow oscillations of membrane potential (MP). The possibility of simulating the maintenance of bursting in the presence of cadmium ions is shown. Inclusion in the model of the calcium-inactivated calcium conductance makes it possible to reproduce both adaptation of the neuron to constant polarizing current, which modifies bursting, and the development of slow inward current when MP is clamped at different phases at the slow wave. In our simulations, the characteristic properties of bursts (such as an increase in the frequency of action potentials and a decrease in spike undershoot at the beginning of a burst) are due to the cumulative inactivation of potassium current. The advantages of the presented mathematical model of bursting compared with other models are discussed.Neirofiziologiya/Neurophysiology, Vol. 26, No. 5, pp. 373–381, September–October, 1994.  相似文献   

8.
B G Katzung 《Life sciences》1978,23(13):1309-1315
Automaticity is the result of dynamic changes in transmembrane currents during electrical diastole. It is readily demonstrated in most cardiac cell types. In all four cardiac cell types studied by the voltage clamp technique (Purkinje, ventricular, atrial, and sino-atrial node fibers), the major change detected during diastolic depolarization is a decrease in outward current. This decrease in a repolarizing current (largely potassium mediated) permits an inward current (sodium and/or calcium mediated) to depolarize the cell.All four cardiac cell types appear to possesess a time-dependent potassium conductance which controls the decrease in outward current over the ?70 to ?30 mV potential range. Purkinje fibers manifest an additional conductance which is responsible for automaticity in this type of cell at potentials between ?100 and ?70 mV.  相似文献   

9.
已知大鼠外膝体内有中脑上丘来的含P-物质的神经末梢,其机能不明。在离休的大鼠外膝体脑片上用单电极电压箝位的方法研究了P-物质对外膝体神经元电压依赖性离子通道的作用。结果表明,P-物质可以使静息膜去极化,并降低膜电导。这提示P-物质抑制了线性钾漏电流。此外,P-物质还抑制去极化激活的慢失活的钾电流、低阈值钙电流和超极化激活的内向整流(H或Q)电流。P-物质还可能抑制早钾(A)电流。因此,P-物质在外膝体视觉信号传递中的作用是使外膝体神经元从爆发反应方式或振荡状态转化为中继反应方式,易化突触传递,使视网膜的视觉信号忠实地传递到大脑皮层。  相似文献   

10.
During prolonged activity the action potentials of skeletal muscle fibres change their shape. A model study was made as to whether potassium accumulation and removal in the tubular space is important with respect to those variations. Classical Hodgkin-Huxley type sodium and (potassium) delayed rectifier currents were used to determine the sarcolemmal and tubular action potentials. The resting membrane potential was described with a chloride conductance, a potassium conductance (inward rather than outward rectifier) and a sodium conductance (minor influence) in both sarcolemmal and tubular membranes. The two potassium conductances, the Na-K pump and the potassium diffusion between tubular compartments and to the external medium contributed to the settlement of the potassium concentration in the tubular space. This space was divided into 20 coupled concentric compartments. In the longitudinal direction the fibre was a cable series of 56 short segments. All the results are concerned with one of the middle segments. During action potentials, potassium accumulates in the tubular space by outward current through both the delayed and inward rectifier potassium conductances. In between the action potentials the potassium concentration decreases in all compartments owing to potassium removal processes. In the outer tubular compartment the diffusion-driven potassium export to the bathing solution is the main process. In the inner tubular compartment, potassium removal is mainly effected by re-uptake into the sarcoplasm by means of the inward rectifier and the Na-K pump. This inward transport of potassium strongly reduces the positive shift of the tubular resting membrane potential and the consequent decrease of the action potential amplitude caused by inactivation of the sodium channels. Therefore, both potassium removal processes maintain excitability of the tubular membrane in the centre of the fibre, promote excitation-contraction coupling and contribute to the prevention of fatigue. Received: 5 May 1998 / Revised version: 27 October 1998 / Accepted: 19 January 1999  相似文献   

11.
The Pinsky-Rinzel model is a non-smooth 2-compartmental CA3 pyramidal cell model that has been used widely within the field of neuroscience. Here we propose a modified (smooth) system that captures the qualitative behaviour of the original model, while allowing the use of available, numerical continuation methods to perform full-system bifurcation and fast-slow analysis. We study the bifurcation structure of the full system as a function of the applied current and the maximal calcium conductance. We identify the bifurcations that shape the transitions between resting, bursting and spiking behaviours, and which lead to the disappearance of bursting when the calcium conductance is reduced. Insights gained from this analysis, are then used to firstly illustrate how the irregular spiking activity found between bursting and stable spiking states, can be influenced by phase differences in the calcium and dendritic voltage, which lead to corresponding changes in the calcium-sensitive potassium current. Furthermore, we use fast-slow analysis to investigate the mechanisms of bursting and show that bursting in the model is dependent on the intermediately slow variable, calcium, while the other slow variable, the activation gate of the afterhyperpolarisation current, does not contribute to setting the intraburst dynamics but participates in setting the interburst interval. Finally, we discuss how some of the described bifurcations affect spiking behaviour, during sharp-wave ripples, in a larger network of Pinsky-Rinzel cells.  相似文献   

12.
A phase-plane bifurcation analysis is a useful way to theoretically understand how various types of arrhythmias may arise from excitable tissues. In this paper, we have performed phase-plane bifurcation analysis to characterize arrhythmogenic states in excitable tissues. To achieve this, we have first formulated a model which is simple enough to be mathematically tractable, yet captures the non-linear features of cardiac excitation and conduction. In this model, single cells are connected in a circular fashion by gap conductances. Each cell carries the following two types of currents: a passive outward current and an inward "excitable" current which contains an activation and an inactivation gate. The activation gate is responsible for the upstroke of action potential and inactivation gate is responsible for the termination of the plateau potential. With this model, we have constructed bifurcation diagrams as a function of a bifurcation parameter. The parameter chosen as the bifurcation parameter has the property of raising maximum diastolic potential while shorting the refractory period. Our analysis revealed the existence of three distinct multi-stable phases in certain ranges of the bifurcation parameter: (1) bistability between a rotor and a quiescent state, (2) bistability between rotor and ectopic beats, and (3) three stable states co-existing among quiescent state, rotor, and ectopic beats. In these three regions, external impulses exert very distinct effects: In region 1, a brief current pulse can annihilate a re-entrant arrhythmia to quiescence. To initiate re-entry from a quiescent tissue, however, it takes two pulses (a primary pulse followed by a premature pulse at a site different from the "primary" site). In region 2, a brief pulse can convert a re-entrant arrhythmia to ectopic beats. To convert the ectopic beats back to circus movement, these beats have to be suppressed by a few brief current pulses to initiate one-way propagation. Depending on the frequency and strength of impulses in region 3, the tissue can switch back and forth among quiescence, circus movement, and ectopic beats. For comparison, we have also included a more complete Beeler-Reuter cardiac cell model in our analysis and obtained essentially the same results. From the behavioral similarities of these models, we conclude that re-entrant and ectopic arrhythmias must be intrinsic properties of excitable tissues and external stimuli can convert one mode of arrhythmia to another in the multistability regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
 The mechanisms underlying the diverse responses to step current stimuli of models [Edman et al. (1987) J Physiol (Lond) 384: 649–669] of lobster slowly adapting stretch receptor organs (SAO) and fast-adapting stretch receptor organs (FAO) are analyzed. In response to a step current, the models display three distinct types of firing reflecting the level of adaptation to the stimulation. Low-amplitude currents evoke transient firing containing one to several action potentials before the system stabilizes to a resting state. Conversely, high-amplitude stimulations induce a high frequency transient burst that can last several seconds before the model returns to its quiescent state. In the SAO model, the transition between the two regimes is characterized by a sustained pacemaker firing at an intermediate stimulation amplitude. The FAO model does not exhibit such a maintained firing; rather, the duration of the transient firing increases at first with the stimulus intensity, goes through a maximum and then decreases at larger intensities. Both models comprise seven variables representing the membrane potential, the sodium fast activation, fast inactivation, slow inactivation, the potassium fast activation, slow inactivation gating variables, and the intra cellular sodium concentration. To elucidate the mechanisms of the firing adaptations, the seven-variable model for the lobster stretch receptor neuron is first reduced to a three-dimensional system by regrouping variables with similar time scales. More precisely, we substituted the membrane potential V for the sodium fast activation equivalent potential V m , the potassium fast inactivation V n for the sodium fast inactivation V h , and the sodium slow inactivation V l for the potassium slow inactivation V r . Comparison of the responses of the reduced models to those of the original models revealed that the main behaviors of the system were preserved in the reduction process. We classified the different types of responses of the reduced SAO and FAO models to constant current stimulation. We analyzed the transient and stationary responses of the reduced models by constructing bifurcation diagrams representing the qualitatively distinct dynamics of the models and the transitions between them. These revealed that (1) the transient firings prior to reaching the stationary state can be accounted for by the sodium slow inactivation evolving more slowly than the other two variables, so that the changes during the transient firings reflect the bifurcations that the two-dimensional system undergoes when the sodium slow inactivation, considered as a parameter, is varied; and (2) the stationary behaviors of the models are captured by the standard bifurcations of a two-dimensional system formed by the membrane potential and the potassium fast inactivation. We found that each type of firing and the transitions between them is due to the interplay between essentially three variables: two fast ones accounting for the action potential generation and the post-discharge refractoriness, and a third slow one representing the adaptation. Received: 28 February 2000 / Accepted in revised form: 4 October 2000  相似文献   

14.
BACKGROUND: The predictions of the Hodgkin-Huxley model do not accurately fit all the measurements of voltage-clamp currents, gating charge and single-channel currents. There are many quantitative differences between the predicted and measured characteristics of the sodium and potassium channels. For example, the two-state gate model has exponential onset kinetics, whereas the sodium and potassium conductances show S-shaped activation and the sodium conductance shows an exponential inactivation. In this paper we shall examine a more general channel model that can more faithfully represent the measured properties of ionic channels in the membrane of the excitable cell. METHODS: The model is based on the generalisation of the notion of a channel with a discrete set of states. Each state has state attributes such as the state conductance, state ionic current and state gating charge. These variables can have quite different waveforms in time, in contrast with a two-state gate channel model, in which all have the same waveforms. RESULTS: The kinetics of all variables are equivalent: gating and ionic currents give equivalent information about channel kinetics; both the equilibrium values of the current and the time constants are functions of membrane potential. The results are in almost perfect concordance with the experimental data regarding the characteristics of nerve impulse. CONCLUSIONS: The expected values of the gating charge and the ionic conductance are weighted sums of the state occupancy probabilities, but the weights differ: for the expected value of the gating charge the weights are the state gating charges and for the expected value of the ionic conductance the weights are the state conductances. Since these weights are different, the expected values of the gating charge and the ionic conductance will differ.  相似文献   

15.
1.  The effect of outward and inward water flows through the membrane on outward potassium currents of dialyzedHelix pomatia neurons was studied.
2.  An outward water flow increased the peak and sustained outward potassium currents and accelerated the kinetics of their activation. An inward water flow had quite opposite effects—it decreased the peak and sustained potassium currents and delayed the kinetics of their activation.
3.  The analysis of the effect of water flow on the conductance of potassium channels showed that an outward water flow increased both the potassium conductance at a given potential (gk) and the maximum potassium conductance (g k max ). An inward water flow again had the opposite effect—it decreased the potassium conductance at given potential and the maximum potassium conductance.
4.  Neither an outward nor an inward water flow significantly affected the fraction of open potassium channels at a given potential [n (V)].
5.  These data suggest that in dialyzed neurons the changes of outward potassium current during water flow through the membrane are due mainly to the changes in single-channel conductance and the time constant of current activation.
  相似文献   

16.
Whole-cell membrane currents were measured in isolated cat ventricular myocytes using a suction-electrode voltage-clamp technique. An inward-rectifying current was identified that exhibited a time-dependent activation. The peak current appeared to have a linear voltage dependence at membrane potentials negative to the reversal potential. Inward current was sensitive to K channel blockers. In addition, varying the extracellular K+ concentration caused changes in the reversal potential and slope conductance expected for a K+ current. The voltage dependence of the chord conductance exhibited a sigmoidal relationship, increasing at more negative membrane potentials. Increasing the extracellular K+ concentration increased the maximal level of conductance and caused a shift in the relationship that was directly proportional to the change in reversal potential. Activation of the current followed a monoexponential time course, and the time constant of activation exhibited a monoexponential dependence on membrane potential. Increasing the extracellular K+ concentration caused a shift of this relationship that was directly proportional to the change in reversal potential. Inactivation of inward current became evident at more negative potentials, resulting in a negative slope region of the steady state current-voltage relationship between -140 and -180 mV. Steady state inactivation exhibited a sigmoidal voltage dependence, and recovery from inactivation followed a monoexponential time course. Removing extracellular Na+ caused a decrease in the slope of the steady state current-voltage relationship at potentials negative to -140 mV, as well as a decrease of the conductance of inward current. It was concluded that this current was IK1, the inward-rectifying K+ current found in multicellular cardiac preparations. The K+ and voltage sensitivity of IK1 activation resembled that found for the inward-rectifying K+ currents in frog skeletal muscle and various egg cell preparations. Inactivation of IK1 in isolated ventricular myocytes was viewed as being the result of two processes: the first involves a voltage-dependent change in conductance; the second involves depletion of K+ from extracellular spaces. The voltage-dependent component of inactivation was associated with the presence of extracellular Na+.  相似文献   

17.
The new nonhormonal activator of adenylate cyclase forskolin was studied on frog atrial trabeculae by current clamp and voltage clamp methods using a double sucrose gap technique. Forskolin (5 X 10(-6) M to 2 X 10(-5) M) dose-dependently increased action potential duration, the height of the plateau and twitch tension. The time constant for inactivation of the slow inward current and the steady state kinetic variables of calcium channels d infinity and f infinity remained uneffected. Forskolin increased the amplitude of slow inward calcium current isi and of the phasic tension related to it. The maximal conductance gsi increased. These effects were indistinguishable from those obtained earlier on cardiac fibers with hormonal and nonhormonal activators of cyclic AMP-dependent phosphorylation. The beta-adrenoreceptor antagonist propranolol 10(-6)M did not decrease the effect of forskolin. Forskolin had no effect when slow inward current was previously increased by saturating concentrations of the beta-adrenergic agonist isoproterenol (10(-4)M). Our results are in favour of the hypothesis that cyclic AMP-dependent phosphorylation of membrane proteins modulates the Ca-entry in the heart cells through the membrane slow calcium channels.  相似文献   

18.
Under voltage clamp conditions ionic currents of neurons of the molluskHelix were studied in solutions containing barium ions. Replacement of the calcium ions in the normal external solution by barium ions led to displacement of the potassium conductivity versus membrane potential curve along the voltage axis toward more positive potentials and also to a decrease in the limiting value of the potassium conductance of the membrane. In sodium- and calcium-free solutions containing barium ions two fractions of the inward current are recorded: quickly (I) and slowly (II) inactivated. The rates of activation of these fractions are comparable. Barium ions are regarded as carriers of both fractions of the inward current. It is postulated that both fractions of the barium current are carried along the calcium channels of the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 408–414, July–August, 1977.  相似文献   

19.
Spike-frequency adaptation is the continuous decline in discharge rate in response to a constant stimulus. We have described three distinct phases of adaptation in rat hypoglossal motoneurones: initial, early and late. The initial phase of adaptation is over in one or two intervals, and is primarily due to summation of the calcium-activated potassium conductance underlying the medium duration afterhyperpolarization (mAHP). The biophysical mechanisms underlying the later phases of adaptation are not well understood. Two of the previously-proposed mechanisms for adaptation are an increase in outward current flowing through calcium-activated potassium channels and increasing outward current produced by the electrogenic sodium-potassium pump. We found that neither of these mechanisms are necessary for the expression of the early and late phases of adaptation. The magnitude of the initial phase of adaptation was reduced when the calcium in the external solution was replaced with manganese, but the magnitudes of the early and late phases were consistently increased under these conditions. Partial blockade of the sodium-potassium pump with ouabain had no significant effect on any of the three phases of adaptation. Our current working hypothesis is that the magnitude of late adaptation depends upon the interplay between slow inactivation of sodium currents, that tends to decrease discharge rate, and the slow activation or facilitation of a calcium current that tends to increase discharge rate. Adaptation is often associated with a progressive decrease in the peak amplitude and rate of rise of action potentials, and a computer model that incorporated slow inactivation of sodium channels reproduced this phenomenon. However, the time course of adaptation does not always parallel changes in spike shape, indicating that the progressive activation of another inward current might oppose the decline in frequency caused by slow sodium inactivation.  相似文献   

20.
Understanding the impact of intracellular pathogens on the behavior of their host cells is key to designing new interventions. We are interested in how Leishmania alters the electrical function of the plasma membrane of the macrophage it infects. The specific question addressed here is the impact of Leishmania infection on macrophage membrane properties during the first 12 h post-infection. A decrease of 29% in macrophage membrane capacitance at 3 h post-infection indicates that the phagolysosome membrane is donated on entry by the macrophage plasma membrane. Macrophage membrane potential depolarized during the first 12 h post-infection, which associated with a decreased inward potassium current density, changed in inward rectifier conductance and increased outward potassium current density. Decreased membrane capacitance and membrane potential, with no changes in ion current density, were found in macrophages after phagocytosis of latex beads. Therefore we suggest that the macrophage membrane changes observed during early Leishmania infection appear to be associated with the phagocytic and activation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号