首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABA-evoked contractions of the guinea pig ileum were significantly potentiated by the histamine H2-receptor antagonist ranitidine in concentrations above 10 microM. To help define the mechanism of this interaction, the present study compared the effects of ranitidine on contractile responses of the guinea pig ileum to GABA, acetylcholine (A Ch) and electrical stimulation of intrinsic cholinergic neurons. Ranitidine, at concentrations that potentiated responses to GABA, also potentiated contractions induced by transmural electrical stimulation. The ability of ranitidine to amplify these latter responses was antagonized by atropine. Contractile responses to exogenous A Ch, however, were unaffected by ranitidine at any concentration. These results suggest that prejunctional, rather than postjunctional mechanisms, are of primary importance in the interaction between ranitidine and GABA.  相似文献   

2.
To determine whether neutral endopeptidase (NEP), also called enkephalinase (EC 3.4.24.11), modulates the effects of exogenous and endogenous tachykinins in vivo, we studied the effects of aerosolized phosphoramidon, a specific NEP inhibitor, on the responses to aerosolized substance P (SP) and on the atropine-resistant response to vagus nerve stimulation (10 V, 5 ms for 20 s) in guinea pigs. SP alone (10(-7) to 10(-4) M; each concentration, 7 breaths) caused no change in total pulmonary resistance (RL, P greater than 0.5). Phosphoramidon (10(-4) M, 90 breaths) caused no change either in base-line RL (P greater than 0.5) or in the response to aerosolized acetylcholine (P greater than 0.5). However, in the presence of phosphoramidon, SP (7 breaths) produced a concentration-dependent increase in RL at concentrations greater than or equal to 10(-5) M (P less than 0.001). Phosphoramidon (10(-7) to 10(-4) M; each concentration, 90 breaths) induced a concentration-dependent potentiation of SP-induced bronchoconstriction (10(-4) M, 7 breaths; P less than 0.01). Vagus nerve stimulation (0.5-3 Hz), in the presence of atropine, induced a frequency-dependent increase in RL (P less than 0.001). Phosphoramidon potentiated the atropine-resistant responses to vagus nerve stimulation (P less than 0.001) at frequencies greater than 0.5 Hz. The tachykinin antagonist [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-substance P abolished the effects of phosphoramidon on the atropine-resistant response to vagus nerve stimulation (2 Hz, P less than 0.005). NEP-like activity in tracheal homogenates of guinea pig was inhibited by phosphoramidon with a concentration producing 50% inhibition of 5.3 +/- 0.8 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The purpose of the study was to evaluate the importance of the epithelium in determining the potency of exogenous vasoactive intestinal peptide (VIP) in inhibiting responses of isolated guinea pig trachea to vagal stimulation. Isolated innervated tracheal preparations (n = 56) were mounted in glass organ baths in Krebs-Henseleit (K-H) solution at 37 degrees C and gassed with 95% O2-5% CO2. The inside of the trachea was separately perfused with K-H solution at 1 ml/min. The vagal nerve trunks were stimulated (20 V, 1-ms pulses, 10-s trains) at low (0.5 Hz) and high frequency (15 Hz) alternately, and the contractile responses were measured as increases in intratracheal pressures. VIP (10(-8)-10(-7) M) inhibited responses to both high- and low-frequency stimulation. VIP was more potent in inhibiting contractions when administered to the outside than the inside surface of the trachea, and disruptionon of the epithelium abolished this difference. The endopeptidase inhibitors phosphoramidon and thiorphan (5 x 10(-6) M) potentiated the action of VIP. These data indicate that the epithelium reduces the efficacy of VIP. We suggest that the epithelium is a site of degradation of VIP by endopeptidase and may also be a diffusion barrier.  相似文献   

4.
The cellular and molecular effects of forskolin, a direct, nonhormonal activator of adenylate cyclase, were assessed on the enzyme secretory process in dispersed rat pancreatic acinar cells. Forskolin stimulated adenylate cyclase activity in the absence of guanyl nucleotide. It promoted a rapid and marked increase in cellular accumulation of cyclic AMP alone or in combination with vasoactive intestinal peptide (VIP) but was itself a weak pancreatic agonist and did not increase the secretory response to VIP or other cyclic AMP dependent agonists. Somatostatin was a partial antagonist of forskolin stimulated cyclic AMP synthesis and forskolin plus cholecystokinin-octapeptide (CCK-OP) induced amylase release. Forskolin potentiated amylase secretion in response to calcium-dependent agonists such as CCK-OP, carbachol and A-23187, but did not affect the ability of CCK-OP and (or) carbachol to mobilize 45Ca from isotope preloaded cells; forskolin alone did not stimulate 45Ca release. In calcium-poor media, the secretory response to forskolin and CCK-OP was reduced in a both absolute and relative manner. The data suggests that calcium plays the primary role as intracellular mediator of enzyme secretion and that the role of cyclic AMP may be to modulate the efficiency of calcium utilization.  相似文献   

5.
The effects of neuropeptide Y (NPY) on the contractile response to vagus nerve stimulation at different frequencies was studied in an isolated tracheal tube preparation from guinea pig. NPY had no effect on basal smooth muscle tension or on the contractile effect of carbachol, but inhibited vagally induced contractions in a concentration-dependent manner with a greater inhibition at low frequencies than at high. We suggest that the effect is exerted prejunctionally.  相似文献   

6.
The airways of the guinea pig are richly innervated by peptide-containing nerve fibers. Among the most abundant neuropeptides are calcitonin gene-related peptide (CGRP) and substance P (SP), which are stored in nerve fibers located predominantly within and beneath the epithelium, and vasoactive intestinal peptide (VIP), which is located in fibers running mainly among smooth muscle bundles and seromucous glands. Sensory denervation (capsaicin treatment) of adult guinea pigs caused an almost total disappearance of CGRP- and SP-containing nerve fibers, while the density of VIP-containing nerve fibers located in smooth muscle seemed to increase. In the isolated trachea, perfused luminally, CGRP was found to appear in the intraluminal fluid after exposure to capsaicin but not after electrical vagal stimulation. CGRP concentrations in the tracheal wall did not change significantly. Luminally applied CGRP did not affect smooth muscle tension, measured as intraluminal volume changes.  相似文献   

7.
A study of the effects of dihydropyridine Ca2+ channel modulators on the release of catecholamines from perfused rat adrenal glands, evoked by electrical stimulation of their splanchnic nerves, is presented. Electrically mediated secretory responses were compared to chemically mediated responses (exogenous acetylcholine, nicotine, or high K+). Intensities of stimuli were selected to produce quantitatively similar secretory responses (between 100 and 200 ng per stimulus). The main finding of the study is that responses to transmural stimulation (300 pulses at 1 or 10 Hz) and to acetylcholine were inhibited only partially (about 50%) by isradipine, an L-type Ca2+ channel blocker. In contrast, responses to high K+ (17.5 mM for 2 min) were highly sensitive to isradipine (IC50 = 8.2 nM). Responses to nicotine were also fully inhibited by this drug. Bay K 8644 (an L-type Ca2+ channel activator) potentiated mildly the secretory responses to electrical stimulation at 10 Hz and to acetylcholine, but increased threefold the responses to K+ and nicotine. It is, therefore, likely that responses mediated by high K+ or nicotinic receptors are triggered by external Ca2+ gaining access to the internal secretory machinery through L-type, dihydropyridine-sensitive voltage-dependent Ca2+ channels. However, in addition to nicotinic receptors, the physiological stimulation of adrenal medulla chromaffin cells through splanchnic nerves has other components, i.e., muscarinic receptor stimulation or the release of cotransmitters such as vasoactive intestinal polypeptide. The poorer sensitivity to dihydropyridines of secretory responses triggered by electrical stimulation of splanchnic nerve terminals or exogenous acetylcholine speaks in favor of alternative Ca2+ pathways, probably some dihydropyridine-resistant Ca2+ channels, in modulating the physiological adrenal catecholamine secretory process.  相似文献   

8.
Both substance-P and vasoactive intestinal peptide (VIP) have previously been demonstrated to contract and relax, respectively, the isolated guinea pig trachea. In addition, substance-P and VIP have been localized within the pulmonary innervation of various species. In the present studies, substance-P was found to cause a concentration-related contraction of isolated lung parenchymal strips of the guinea pig, as well as isolated tracheal strips. VIP caused a significant concentration-related relaxation of the isolated tracheal strip, but not the lung parenchymal strip. Indomethacin, a prostaglandin synthetase inhibitor, potentiated the contractile response of the trachea to substance-P and inhibited the VIP- and isoproterenol-induced relaxation. These studies are potentially important in understanding the pathogenesis of bronchospastic disorders, since alterations in prostaglandin biosynthesis may result in hyperreactivity of airways to contractile agonists such as neurotransmitters, as well as an inhibition of relaxation induced by endogenous substances such as VIP or β agonists.  相似文献   

9.
The effect of parasympathetic and sympathetic nerve stimulation on the secretion of gastric somatostatin and gastrin has been studied in an isolated perfused rat stomach preparation. Stimulation of the vagus nerve inhibited somatostatin secretion and increased gastrin release. Splanchnic nerve stimulation increased somatostatin release during simultaneous atropine perfusion, but not in its absence, whereas gastrin secretion was unchanged. The secretory activity of the gastric D-cell was therefore reciprocally influenced by the sympathetic and parasympathetic nerves but sympathetic stimulation was only effective during muscarinic blockade.  相似文献   

10.
We studied the effect of vasoactive intestinal peptide (VIP) on the contractile responses to electrical field stimulation (EFS) in isolated ferret tracheal segments. VIP did not change resting tension up to 2 X 10(-7) M, but it showed a biphasic effect on the responses to EFS. In concentrations up to 10(-9) M, VIP potentiated the response; at higher concentrations VIP reduced responses. Thus, at a concentration of 10(-9) M, VIP decreased the mean (+/- SE) log EFS frequency, producing 50% of maximum contraction significantly from a control value of 0.476 +/- 0.062 to 0.214 +/- 0.057 Hz (P less than 0.01); at a concentration of 2 X 10(-7) M VIP increased the half-maximal frequency from a control value of 0.513 +/- 0.086 to 0.752 +/- 0.053 Hz (P less than 0.05). The potentiating effect of VIP (10(-9) M) was not inhibited by hexamethonium, indomethacin, pyrilamine, methysergide, or [D-Pro2,D-Trp7,9] substance P. The inhibitory effect of VIP (2 X 10(-7) M) was also not inhibited by hexamethonium, indomethacin, or naloxone. In contrast to EFS-induced contraction, contractions produced by acetylcholine (10(-9) to 10(-3) M) were not affected by VIP at concentrations of 10(-9) and 2 X 10(-7) M. These results suggest that VIP modulates contractions produced by EFS via presynaptic cholinergic mechanisms and probably through a specific VIP receptor.  相似文献   

11.
Prodolic acid, a new non-steroidal anti-inflammatory compound, inhibited bradykinin-induced bronchoconstriction but did not affect histamine-induced bronchoconstriction in the guinea pig. Prodolic acid potentiated the responses of the isolated rabbit vas deferens and portal vein to electrical stimulation without altering the response to noradrenaline. The potentiating effects of prodolic acid on the vas deferens were reversible but the potentiating effects in the portal vein were frequency-dependent. It is concluded that these effects of prodolic acid are probably related to its ability to inhibit prostaglandin biosynthesis.  相似文献   

12.
The COOH-terminal octapeptide of cholecystokinin (CCK-OP) and carbamylcholine each increased calcium outflux, cellular cyclic GMP and amylase secretion in dispersed guinea pig pancreatic acinar cells. Following addition of CCK-OP or carbamylcholine, cellular cyclic GMP increased as early as 15 s, became maximal after 1 to 2 min, and then decreased steadily during the subsequent incubation. For both CCK-OP and carbamylcholine there was close agreement between the dose-response curve for stimulation of calcium outflux and that for increase of cellular cyclic GMP. With CCK-OP an effect on both functions could be detected at 10(-10) M and maximal stimulation occurred at 3 X 10(-8) M. With carbamylcholine an effect on both functions could be detected at 10(-5) M and maximal stimulation occurred at 3 X 10(-3) M. Atropine inhibited stimulation of both cyclic GMP and calcium outflux by carbamylcholine but not by CCK-OP. Stimulation of calcium outflux or cellular cyclic GMP by CCK-OP or carbamylcholine did not require extracellular calcium since stimulation occurred in a calcium-free, ethylene glycol bis(beta, beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA)-containing solution. The divalent cation ionophore A-23187 increased bidirectional fluxes of calcium, cellular cyclic GMP and secretion of amylase from dispersed pancreatic acinar cells. Like CCK-OP and carbamylcholine, the ionophore stimulated calcium outflux and cellular cyclic GMP in a calcium-free, EGTA-containing solution. These results suggest that in pancreatic acinar cells the initial step in the sequence of events mediating the action of ionophore as well as that of CCK-OP and carbamylcholine is stimulation of calcium outflux, and that this stimulation then increases cellular cyclic GMP.  相似文献   

13.
Vagal innervation of guinea pig bronchial smooth muscle   总被引:2,自引:0,他引:2  
We isolated the guinea pig right bronchus with the vagus nerves intact and evaluated the changes in isometric tension of the smooth muscle in response to nerve stimulation. Brief (10-s) trains of electrical field stimulation or vagus nerve stimulation caused a biphasic contraction: the "first phase" sensitive to atropine and the "second phase" sensitive to capsaicin. The two phases could be dissociated by adjusting the stimulus intensity; greater stimulus intensities (pulse durations or voltage) were required to evoke the capsaicin-sensitive phase. When stimulated at 30-min intervals, the magnitude of both phases of the contractions declined over a 2-h period of repeated stimulation; however, this was prevented by indomethacin. Stimulation of the left vagus nerve resulted in a monophasic contraction of the right bronchus, with little evidence of a capsaicin-sensitive phase. Blocking neurotransmission through the bronchial ganglion, as monitored by intracellular recording techniques, abolished the first-phase contraction but had no effect on the capsaicin-sensitive phase. Selective blockade of muscarinic M1 receptors had no effect on vagus nerve-mediated contractions. The results demonstrate that the left and right vagus nerves carry preganglionic fibers to the right bronchial ganglion. The right but not the left vagus nerve also carries capsaicin-sensitive afferent fibers that, when stimulated, result in a persistent contraction of the right bronchus. Finally, we provide functional and electrophysiological evidence supporting the hypothesis that capsaicin-sensitive afferent neurons communicate with postganglionic motoneurons within the bronchus.  相似文献   

14.
Vasoactive intestinal polypeptide (VIP) in the pig pancreas is localized to nerves, many of which travel along the pancreatic ducts. VIP stimulates pancreatic fluid and bicarbonate secretion like secretin. Electrical vagal stimulation in the pig causes an atropine-resistant profuse secretion of bicarbonate-rich pancreatic juice. In an isolated perfused preparation of the pig pancreas with intact vagal nerve supply, electrical vagal stimulation caused an atropine-resistant release of VIP, which accurately parallelled the exocrine secretion of juice and bicarbonate. Perfusion of the pancreas with a potent VIP-antiserum inhibited the effect of vagal stimulation on the exocrine secretion. It is concluded, that VIP is responsible for (at least part of) the neurally controlled fluid and bicarbonate secretion from the pig pancreas.  相似文献   

15.
In order to evaluate the mode of action of galanin (GAL) on the neuroeffector mechanism of peripheral sympathetic nerve fibers, the effects of this peptide were tested on the electrical stimulated and the unstimulated preparations of the isolated rat vas deferens in the presence of 10(-7) M atropine. The contractile responses, which were mediated predominantly by activation of postganglionic noradrenergic nerve fibers were dose-dependently potentiated by GAL in concentrations ranging from 1 to 50 nM. The facilitatory action induced by GAL in high concentrations (greater than 10 nM) usually returned to the control level at 2-3 min and were tachyphylactic. The potentiating action of GAL was not modified by pretreatment with 10(-7) M propranolol. Contractions produced by exogenous norepinephrine (NE) in the unstimulated preparations were not affected by pretreatment with low concentrations (less than 5 nM) of GAL. On the other hand, the contractions were dose-dependently potentiated 1 min after pretreatment with higher concentrations (greater than 10 nM) of GAL, which recovered 15 min after constant flow washout. Contractions developed by exogenous 5-hydroxytryptamine were not affected, or slightly inhibited, by GAL (1-50 nM). In some preparations without electrical stimulation, high concentrations of GAL caused a slight contraction, which was not blocked by pretreatment with 10(-6) M phentolamine and 10(-6) M tetrodotoxin. These results suggest that GAL receptors exist presynaptically in the rat vas deferens and that stimulation of the receptors by GAL potentiates the release of NE from the nerve terminals during postganglionic sympathetic nerve stimulation. Other mechanisms for GAL action, such as influence on neuronal uptake and catecholamine metabolism, cannot be ruled out.  相似文献   

16.
Strips of muscle, approximately 12 segments in length, were prepared from the body wall of the earthworm, Lumbricus terrestris, from which the nerve cord and viscera had been removed. Contractions to electrical stimulation and acetylcholine agonists were recorded using an isometric transducer. A range of nicotinic and muscarinic agonists and antagonists were tested on this preparation and the results indicate that the acetylcholine receptor on this muscle cannot be classified as either nicotinic or muscarinic. Hemicholinium-3 abolished electrically induced muscle twitches at concentrations which had no effect on the acetylcholine response. Alpha-Bungarotoxin blocked the responses to both electrical stimulation and acetylcholine while beta-bungarotoxin blocked the contractions induced by electrical stimulation but potentiated the acetylcholine contraction.  相似文献   

17.
The sources of calcium for cholecystokinin octapeptide (CCK-OP)-induced gallbladder smooth muscle contraction are considered both extracellular and intracellular, but the relative need for intracellular calcium especially at low, physiological concentrations is not clear. To better define the calcium sources responsible for guinea-pig gallbladder contractions in vitro, we inhibited calcium influx using the calcium channel blocker, methoxyverapamil, and a calcium-free Krebs' solution. Availability and release of intracellular calcium stores were depleted by strontium substitution and ryanodine. CCK-OP was compared to bethanechol and potassium chloride (KCl). Preventing calcium influx with 10(-5) M methoxyverapamil depressed the responses to CCK-OP, bethanechol and KCl. Methoxyverapamil, however, had little effect on the time-dependent generation of tension to CCK-OP, but significantly reduced the response to bethanechol and KCl, each at ED50. The duration of the contractile response in the calcium-free Krebs' solution to CCK-OP was longer than that for bethanechol. Strontium (2.5 mM) significantly attenuated the response to CCK-OP and bethanechol, but not to KCl. Ryanodine significantly reduced contractions induced by CCK-OP but not for bethanechol, both at low dose ED25. These results indicate that contraction of the guinea-pig gallbladder induced by CCK-OP, bethanechol and KCl requires extracellular calcium influx. Further, the initiation and maintenance of contraction by CCK-OP and bethanechol necessitates calcium mobilisation from intracellular stores. CCK-OP may have a greater penchant for these calcium stores, particularly at physiological doses.  相似文献   

18.
Elucidation of an inhibitory system in the regulation of emesis is presented in this report. Emesis preceded by retching, can be induced in the dog by appropriate electrical stimulation of abdominal vagus nerves at the supradiaphragmatic level. Failure to produce retching or emesis by electrical stimulation of the cervical vagus trunk suggests either that the abdominal vagal emetic afferent does not course in the cervical vagus or that fibers inhibitory to emesis are present. This report presents evidence for afferent fibers inhibitory to retching and emesis in the cervical vagus. Retching and emesis resulting from stimulation of the supradiaphragmatic vagus can be prevented by either transection of the cervical vagus or simultaneous stimulation of the cervical vagus trunk. In addition, retching and emesis occur with stimulation of a fine nerve bundle dissected from the cervical vagus trunk. That the afferent pathway inhibitory to retching and emesis involves pulmonary afferents is suggested by the observation that hyperventilation occurs with stimulation of the cervical vagus trunk.Research supported by U.S.P.H.S. Grant No. FR05339-07  相似文献   

19.
Exposure of the guinea pig urinary bladder to magnesium-free Krebs-Henseleit type solution for 60 min led to an increase in the responses of the tissue to added adenosine 5'-triphosphate (ATP). The responses of the tissue to histamine were unaffected. The atropine-resistant contractions due to nerve stimulation were potentiated at frequencies above 4 Hz when the response of the tissue was 60% of its maximum response. This would suggest that, although ATP does contribute to the responses of the tissue at high frequencies, it is not the transmitter of the noncholinergic nerves present in the bladder.  相似文献   

20.
Immunohistochemical studies of the vas deferens and seminal vesicle of mouse, guinea-pig, and rabbit showed the presence of nerve fibres containing vasoactive intestinal polypeptide (VIP), substance P (SP), and gastrin-releasing peptide (GRP) supplying the smooth muscle layers as well as blood vessels. The nerve supply was better developed in the seminal vesicle than in the vas deferens. The motor activity of the vas deferens and seminal vesicle of the guinea-pig was studied in vitro. The vas deferens responded to transmural electrical stimulation with a twitch followed by a slow contraction. The twitch was blocked by guanethidine and tetrodotoxin, but not by atropine, propranolol, phenoxybenzamine, or fluphenazine. The slow contraction exhibited features of an alpha-receptor-mediated response. SP, physalaemin and eledoisin contracted the smooth muscle and also potentiated the twitch response to electrical nerve stimulation in a concentration-dependent manner. The SP blocking agent, (D-Pro2,D-Trp7,9)-SP, affected neither the resting tension nor the response to electrical stimulation. It is therefore suggested that the SP fibres act mainly prejunctionally. VIP, Leu-enkephalin, cholecystokinin octapeptide (CCK-8), angiotensin II, vasopressin, neurotensin, bombesin, and GRP had no effect on either the resting tension or the response to electrical nerve stimulation. The seminal vesicle responded to electrical stimulation with a contraction which was unimpaired by atropine, propranolol, phenoxybenzamine, and guanethidine, but abolished by tetrodotoxin. Hence, this contraction is mediated by a non-adrenergic, non-cholinergic neurotransmitter. Bombesin, GRP, SP, physalaemin and eledoisin contracted the smooth muscle and potentiated the response to electrical stimulation. VIP, Leu-enkephalin, CCK-8, angiotensin II, vasopressin, and neurotensin had no effect on the resting tension or on the response to transmural electrical stimulation. The SP antagonist abolished the contraction elicited by SP but did not influence the response to nerve stimulation. The results suggest that the SP and GRP nerves may have prejunctional and facilitating postjunctional effects in the seminal vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号