首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tetrahymena ribozyme is a metalloenzyme that catalyzes cleavage of oligonucleotide substrates by phosphoryl transfer. Thiophilic metal ions such as Mn2+, Zn2+ or Cd2+ rescue the >10(3)-fold inhibitory effect of sulfur substitution of the 3'-oxygen leaving group but do not effectively rescue the effect of sulfur substitution of the nonbridging pro-Sp phosphoryl oxygen. We now show that the latter effect can be fully rescued by Zn2+ or Cd2+ using a phosphorodithioate substrate, in which both the 3'-oxygen and the pro-Sp oxygen are simultaneously substituted with sulfur. These results provide the first functional evidence that metallophosphotransferases can mediate catalysis via metal ion coordination to both the leaving group and a nonbridging oxygen of the scissile phosphate.  相似文献   

2.
The DNA polymerase III holoenzyme of Escherichia coli contains a potent 3'----5' exonuclease that removes the terminal nucleotide from a synthetic deoxyoligonucleotide primer with a half-life of approximately 2 s. Degradation of primers could not be effectively prevented by permitting the holoenzyme to "idle" at the primer terminus in the presence of limited deoxynucleoside triphosphates. To further characterize this exonuclease and to develop stable primers to facilitate experimental manipulations, we synthesized a series of twelve 25-mer oligonucleotides that differed only in the two 3'-terminal residues. The penultimate position contained either a CMP or a dCMP residue, while at the terminal position either AMP, dAMP, 2',3'-dideoxyAMP, cordycepin (3'-dAMP), dAMP alpha S, or 2',3'-dideoxyAMP alpha S was incorporated. No single change at either the 3'-penultimate or 3'-terminal positions resulted in a decrease in the exonuclease rate greater than 10-fold; however, combined changes at these two sites resulted in a strong synergistic effect. Placing a ribonucleotide at the penultimate position coupled by a phosphorothioate linkage to a terminal 2',3'-dideoxynucleotide reduced the rate of exonucleolytic activity almost 30,000-fold (half-life approximately 16 h). If only the ribonucleotide and phosphorothioate substitutions were made, a primer capable of being efficiently elongated was generated that exhibited a 500-fold increase in stability (half-life = 40 min). The elemental effect observed by substituting a nonbridging oxygen in the terminal phosphodiester bond for sulfur increased from 1.5 to 200 as other substitutions were made that decreased the exonuclease rate. This was consistent with a change in the rate-limiting step of the exonuclease reaction from a conformational change to the chemical step where the covalent bond is cleaved. At least part of this effect appears to be due to perturbations within the enzyme's active site and not solely due to changes in electrophilicity.  相似文献   

3.
Nagarajan R  Kwon K  Nawrot B  Stec WJ  Stivers JT 《Biochemistry》2005,44(34):11476-11485
The reversible nucleophilic substitution reaction catalyzed by the vaccinia virus type IB topoisomerase has been investigated by measuring the equilibrium and rate effects of stereospecific sulfur substitution at the two nonbridging oxygen atoms of the attacked phosphodiester group. An energetic analysis of the combined effects of sulfur substitution and site-directed mutagenesis of active site residues of the enzyme has identified enzyme interactions with each oxygen in the ground state and transition state. We use these findings in combination with previous structural and 5'-bridging sulfur substitution results to deduce the web of enzymatic interactions with the nonbridging oxygens as well as the 5'-hydroxyl leaving group. A key finding is the central role of Arg130, which forms electrostatic interactions with both nonbridging oxygens and the 5'-leaving group.  相似文献   

4.
5.
A Deirdre  J Scadden    C W Smith 《The EMBO journal》1995,14(13):3236-3246
Nuclear pre-mRNA splicing has a fundamentally similar two-step mechanism to that employed by group II self-splicing introns. It is believed that nuclear pre-mRNA splicing involves a network of RNA-RNA interactions which form the catalytic core of the active spliceosome. We show here a non-Watson-Crick interaction between the first and last guanosine residues of a mammalian intron. As in Saccharomyces cerevisiae, substitution of the conserved guanosines at the 5' and 3' splice sites by A and C respectively, specifically suppresses step 2 splicing defects resulting from the individual mutations. No other combination of terminal nucleotides was able to restore splicing. We additionally provide independent evidence for an indirect interaction between other nucleotides of the consensus splice sites during step 2 of splicing. Substitution of the nucleotide in the +3 position of the 5' splice site affects competition between closely spaced AG dinucleotides at the 3' splice site, although the interaction is not via direct differential base pairing. Finally, we show that complete substitution of guanosine residues by inosine in a pre-mRNA has only a modest effect upon step 2 of splicing, although earlier spliceosome assembly steps are impaired. Predictions can thus be made about the precise configuration of the non-Watson-Crick interaction between the terminal residues.  相似文献   

6.
S Teigelkamp  A J Newman    J D Beggs 《The EMBO journal》1995,14(11):2602-2612
Precursor RNAs containing 4-thiouridine at specific sites were used with UV-crosslinking to map the binding sites of the yeast protein splicing factor PRP8. PRP8 protein interacts with a region of at least eight exon nucleotides at the 5' splice site and a minimum of 13 exon nucleotides and part of the polypyrimidine tract in the 3' splice site region. Crosslinking of PRP8 to mutant and duplicated 3' splice sites indicated that the interaction is not sequence specific, nor does it depend on the splice site being functional. Binding of PRP8 to the 5' exon was established before step 1 and to the 3' splice site region after step 1 of splicing. These interactions place PRP8 close to the proposed catalytic core of the spliceosome during both transesterification reactions. To date, this represents the most extensive mapping of the binding site(s) of a splicing factor on the substrate RNA. We propose that the large binding sites of PRP8 stabilize the intrinsically weaker interactions of U5 snRNA with both exons at the splice sites for exon alignment by the U5 snRNP.  相似文献   

7.
Alternative splicing of SV40 early pre-mRNA in vitro.   总被引:12,自引:4,他引:8       下载免费PDF全文
  相似文献   

8.
The L-21 ScaI ribozyme derived from the intervening sequence of Tetrahymena thermophila pre-rRNA catalyzes a guanosine-dependent endonuclease reaction that is analogous to the first step in self-splicing of this intervening sequence. We now describe pre-steady-state kinetic experiments, with sulfur substituting for the pro-RP (nonbridging) phosphoryl oxygen atom at the site of cleavage, that test aspects of a kinetic model proposed for the ribozyme reaction (Herschlag, D., & Cech, T. R. (1990) Biochemistry 29, 10159-10171). Thio substitution does not affect the reaction with subsaturating oligonucleotide substrate and saturating guanosine ((kcat/Km)S), consistent with the previous finding that binding of the oligonucleotide substrate limits this rate constant. In contrast, there is a significant decrease in the rate of single-turnover reactions of ribozyme-bound (i.e., saturating) oligonucleotide substrate upon thio substitution, with decreases of 2.3-fold for the reaction with guanosine ((kcat/Km)G) and 7-fold for hydrolysis [i.e., with solvent replacing guanosine; kc(-G)]. These "thio effects" are consistent with rate-limiting chemistry, as shown by comparison with model reactions. Nonenzymatic nucleophilic substitution reactions of the phosphate diester, methyl 2,4-dinitrophenyl phosphate monoanion, are slowed 4-11-fold by thio substitution for reactions with hydroxide ion, formate ion, fluoride ion, pyridine, and nicotinamide. In addition, we have confirmed that thio substitution has no effect on the nonenzymatic alkaline cleavage of RNA (Burgers, P. M. J., & Eckstein, F. (1979) Biochemistry 18, 592-596). Considering the strong preference of Mg2+ for binding to oxygen rather than sulfur, the modest thio effect on the chemical step of the ribozyme-catalyzed reaction and the absence of a thio effect on the equilibrium constant for binding of the oligonucleotide substrate suggest that the pro-RP oxygen atom is not coordinated to Mg2+ in the E.S complex or in the transition state. General implications of thio effects in enzymatic reactions of phosphate diesters are discussed.  相似文献   

9.
The rat beta-tropomyosin gene encodes two tissue-specific isoforms that contain the internal, mutually exclusive exons 6 (nonmuscle/smooth muscle) and 7 (skeletal muscle). We previously demonstrated that the 3' splice site of exon 6 can be activated by introducing a 9-nt polyuridine tract at its 3' splice site, or by strengthening the 5' splice site to a U1 consensus binding site, or by joining exon 6 to the downstream common exon 8. Examination of sequences within exons 6 and 8 revealed the presence of two purine-rich motifs in exon 6 and three purine-rich motifs in exon 8 that could potentially represent exonic splicing enhancers (ESEs). In this report we carried out substitution mutagenesis of these elements and show that some of them play a critical role in the splice site usage of exon 6 in vitro and in vivo. Using UV crosslinking, we have identified SF2/ASF as one of the cellular factors that binds to these motifs. Furthermore, we show that substrates that have mutated ESEs are blocked prior to A-complex formation, supporting a role for SF2/ASF binding to the ESEs during the commitment step in splicing. Using pre-mRNA substrates containing exons 5 through 8, we show that the ESEs within exon 6 also play a role in cooperation between the 3' and 5' splice sites flanking this exon. The splicing of exon 6 to 8 (i.e., 5' splice site usage of exon 6) was enhanced with pre-mRNAs containing either the polyuridine tract in the 3' splice site or consensus sequence in the 5' splice site around exon 6. We show that the ESEs in exon 6 are required for this effect. However, the ESEs are not required when both the polyuridine and consensus splice site sequences around exon 6 were present in the same pre-mRNA. These results support and extend the exon-definition hypothesis and demonstrate that sequences at the 3' splice site can facilitate use of a downstream 5' splice site. In addition, the data support the hypothesis that ESEs can compensate for weak splice sites, such as those found in alternatively spliced exons, thereby providing a target for regulation.  相似文献   

10.
11.
Pairing between U2 snRNA and the branch site of spliceosomal introns is essential for spliceosome assembly and is thought to be required for the first catalytic step of splicing. We have identified an RNA comprising the 5' end of U2 snRNA and the 3' exon of the ACT1-CUP1 reporter gene, resulting from a trans-splicing reaction in which a 5' splice site-like sequence in the universally conserved branch site-binding region of U2 is used in trans as a 5' splice site for both steps of splicing in vivo. Formation of this product occurs in functional spliceosomes assembled on reporter genes whose 5' splice sites are predicted to bind poorly at the spliceosome catalytic center. Multiple spatially disparate splice sites in U2 can be used, calling into question both the fate of its pairing to the branch site and the details of its role in splicing catalysis.  相似文献   

12.
The presence of catalytic metal ions in RNA active sites has often been inferred from metal-ion rescue of modified substrates and sometimes from inhibitory effects of alternative metal ions. Herein we report that, in the Tetrahymena group I ribozyme reaction, the deleterious effect of a thio substitution at the pro-Sp position of the reactive phosphoryl group is rescued by Mn2+. However, analysis of the reaction of this thio substrate and of substrates with other modifications strongly suggest that this rescue does not stem from a direct Mn2+ interaction with the Sp sulfur. Instead, the apparent rescue arises from a Mn2+ ion interacting with the residue immediately 3' of the cleavage site, A(+1), that stabilizes the tertiary interactions between the oligonucleotide substrate (S) and the active site. This metal site is referred to as site D herein. We also present evidence that a previously observed Ca2+ ion that inhibits the chemical step binds to metal site D. These and other observations suggest that, whereas the interactions of Mn2+ at site D are favorable for the chemical reaction, the Ca2+ at site D exerts its inhibitory effect by disrupting the alignment of the substrates within the active site. These results emphasize the vigilance necessary in the design and interpretation of metal-ion rescue and inhibition experiments. Conversely, in-depth mechanistic analysis of the effects of site-specific substrate modifications can allow the effects of specific metal ion-RNA interactions to be revealed and the properties of individual metal-ion sites to be probed, even within the sea of metal ions bound to RNA.  相似文献   

13.
Mechanistic analyses of nuclear pre-mRNA splicing by the spliceosome and group II intron self-splicing provide insight into both the catalytic strategies of splicing and the evolutionary relationships between the different splicing systems. We previously showed that 3'-sulfur substitution at the 3' splice site of a nuclear pre-mRNA has no effect on splicing. We now report that 3'-sulfur substitution at the 3' splice site of a nuclear pre-mRNA causes a switch in metal specificity when the second step of splicing is monitored using a bimolecular exon-ligation assay. This suggests that the spliceosome uses a catalytic metal ion to stabilize the 3'-oxyanion leaving group during the second step of splicing, as shown previously for the first step. The lack of a metal-specificity switch under cis splicing conditions indicates that a rate-limiting conformational change between the two steps of splicing may mask the subsequent chemical step and the metal-specificity switch. As the group II intron, a true ribozyme, uses identical catalytic strategies for splicing, our results strengthen the argument that the spliceosome is an RNA catalyst that shares a common molecular ancestor with group II introns.  相似文献   

14.
Enzymes are complex macromolecules that catalyze chemical reactions at their active sites. Important information about catalytic interactions is commonly gathered by perturbation or mutation of active site residues that directly contact substrates. However, active sites are engaged in intricate networks of interactions within the overall structure of the macromolecule, and there is a growing body of evidence about the importance of peripheral interactions in the precise structural organization of the active site. Here, we use functional studies, in conjunction with published structural information, to determine the effect of perturbation of a peripheral metal ion binding site on catalysis in a well-characterized catalytic RNA, the Tetrahymena thermophila group I ribozyme. We perturbed the metal ion binding site by site-specifically introducing a phosphorothioate substitution in the ribozyme's backbone, replacing the native ligands (the pro-R (P) oxygen atoms at positions 307 and 308) with sulfur atoms. Our data reveal that these perturbations affect several reaction steps, including the chemical step, despite the absence of direct contacts of this metal ion with the atoms involved in the chemical transformation. As structural probing with hydroxyl radicals did not reveal significant change in the three-dimensional structure upon phosphorothioate substitution, the effects are likely transmitted through local, rather subtle conformational rearrangements. Addition of Cd(2+), a thiophilic metal ion, rescues some reaction steps but has deleterious effects on other steps. These results suggest that native interactions in the active site may have been aligned by the naturally occurring peripheral residues and interactions to optimize the overall catalytic cycle.  相似文献   

15.
16.
We have previously shown, using phosphorothioate substitutions at splice site, that both transesterification steps of group II intron self-splicing proceed, by stereochemical inversion, with an Sp but not an Rp phosphorothioate. Under alternative reaction conditions or with various intron fragments, group II introns can splice following hydrolysis at the 5' splice site and can also hydrolyze the bond between spliced exons (the spliced-exon reopening reaction). In this study, we have determined the stereochemical specificities of all of the major model hydrolytic reactions carried out by the aI5 gamma intron from Saccharomyces cerevisiae mitochondria. For all substrates containing exon 1 and most of the intron, the stereospecificity of hydrolysis is the same as for the step 1 transesterification reaction. In contrast, the spliced-exon reopening reaction proceeds with an Rp but not an Sp phosphorothioate at the scissile bond, as does true reverse splicing. Thus, by stereochemistry, this reaction appears to be related to the reverse of step 2 of self-splicing. Finally, a substrate RNA that contains the first exon and nine nucleotides of the intron, when reacted with the intron ribozyme, releases the first exon regardless of the configuration of the phosphorothioate at the 5' splice site, suggesting that this substrate can be cleaved by either the step 1 or the step 2 reaction site. Our findings clarify the relationships of these model reactions to the transesterification reactions of the intact self-splicing system and permit new studies to be interpreted more rigorously.  相似文献   

17.
18.
Group I self-splicing introns have a 5' splice site duplex (P1) that contains a single conserved base pair (U.G). The U is the last nucleotide of the 5' exon, and the G is part of the internal guide sequence within the intron. Using site-specific mutagenesis and analysis of the rate and accuracy of splicing of the Tetrahymena thermophila group I intron, we found that both the U and the G of the U.G pair are important for the first step of self-splicing (attack of GTP at the 5' splice site). Mutation of the U to a purine activated cryptic 5' splice sites in which a U.G pair was restored; this result emphasizes the preference for a U.G at the splice site. Nevertheless, some splicing persisted at the normal site after introduction of a purine, suggesting that position within the P1 helix is another determinant of 5' splice site choice. When the U was changed to a C, the accuracy of splicing was not affected, but the Km for GTP was increased by a factor of 15 and the catalytic rate constant was decreased by a factor of 7. Substitution of U.A, U.U, G.G, or A.G for the conserved U.G decreased the rate of splicing by an even greater amount. In contrast, mutation of the conserved G enhanced the second step of splicing, as evidenced by a trans-splicing assay. Furthermore, a free 5' exon ending in A or C instead of the conserved U underwent efficient ligation. Thus, unlike the remainder of the P1 helix, which functions in both the first and second steps of self-splicing, the conserved U.G appears to be important only for the first step.  相似文献   

19.
Substitution of pre-mRNA in vitro splicing substrates with alpha-phosphorothioate ribonucleotide analogs has multiple effects on the processes of spliceosome formation and splicing. A major effect of substitution is on the splicing cleavage/ligation reactions. Substitution at the 5' splice junction blocks the first cleavage/ligation reaction while substitution at the 3' splice junction blocks the second cleavage/ligation reaction. A second effect of phosphorothioate substitution is the inhibition of spliceosome formation. A substitution/interference assay was used to determine positions where substitution inhibits spliceosome formation or splicing. Substitution in the 3' splice site polypyrimidine tract was found to inhibit spliceosome formation and splicing. This effect was enhanced with multiple substitutions in the region. No sites of substitution within the exons were found which affected spliceosome formation or splicing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号