首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resumé La distribution et l'utilisation du carbone photoassimilé par des sojas (Glycine max L. Merr.) nodulés, cultivés en conditions naturelles ont été suivies durant deux années consécutives par expositions répétées et simultanées de plantes à du14CO2 et15N2 pendant une journée. Cette méthode couplée à une analyse détaillée des flux respiratoires au niveau des systèmes racinaires a permis de suivre le devenir du carbone en relation avec l'activité fixatrice d'azote. Les résultats montrent que le stade de développement des plantes au moment du marquage exerce une forte influence sur la distribution initiale du carbone. Ce sont les organes en forte croissance qui attirent le plus d'assimilats récents. Ainsi les organes reproducteurs, accumulent des quantités croissantes à partir de leur formation si bien qu'aux environs du jour 100, ils attirent près de 70% de la production nette. Les nodules eux stockent da 3 à 5% de cette production journalière entre les jours 50 et 100 alors que leur activité fixatrice chute déjà fortement dès le jour 85. Pendant la phase d'activité fixatrice optimale, les quantités de carbone perdues sous forme de CO2, pour le seul processus de réduction du N2, varient entre 2,5 et 7 mg par mg d'azote fixé. Ceci équivaut à la quantité de carbone destinée aux structures racines et nodules. Les transferts secondaires d'organes à organes se font à partir des organes végétatifs et puis des gousses vers les graines, mais essentiellement à partir de carbone assimilé durant la phase de remplissage des gousses (après le jour 80). Cependant, les quantités remobilisées sont faibles, ce qui indique que la croissance des graines dépend surtout d'une alimentation directe à partir de la photosynthèse.
Distribution and utilization of assimilated carbon in relation to dinitrogen fixation in soybean (Glycine max L. Merril)
Summary Distribution and use of photoassimilated carbon by nodulated soybeans (Glycine max L. Merr.) grown in natural conditions have been studied during two consecutive years by successive and simultaneous exposures of the plants to14CO2 and15N2 during one day. This method, together with detailed analysis of CO2 efflux by root systems made it possible to follow the fate of carbon in relation to dinitrogen fixation. The results showed that the stage of development at which the plants were labelled exerted a high influence on the initial distribution of carbon. The growing organs always attracted more of the recently assimilated carbon. So, the reproductive parts accumulated increasing proportions and by day 100 about 70% of the current net production was recovered in pods and seeds. Nodules stored from 3 to 5% of the daily production, from day 50 to day 100, when their fixation activity already dropped by day 85. During the period of optimal fixation the amount of carbon lost as CO2 due to the only process of N2 reduction ranged between 2.5 and 7 mg per mg of N2 fixed. This was equivalent to the amount of carbon directed towards roots and nodules structures during the same time. Secondary transfers by remobilization occurred from leaves and pods to the grains but mainly from the carbon assimilated during the podfilling stage (after day 80). However, these amounts were small indicating that grain development is mainly supported by current assimilates.
  相似文献   

2.
A procedure is described for the routine establishment and multiplication of red clover, Trifolium pratense L., shoot tips which should be applicable to a wide genotypic background. The addition of CO2 to the culture vial or use of polypropylene closures enhanced shoot multiplication at high levels of benzyladenine (BA). Horizontal orientation of crown buds resulted in more efficient multiplication. Culture of nodes from flowering stems was unsuccessful. The cytokinin BA was most effective for shoot multiplication at 2.0 mg/l with maximum shoot production by four weeks. A comparison of several genotypic sources revealed a 10-fold range in response to the multiplication medium with no differences observed among agronomic type or ploidy level. An additional study revealed that multiplication ability of a genotype can be determined after the second subculture since multiplication ability does not change during repeated subculture.Contribution from the Plant Cell Culture Centre, University of Guelph, Department of Crop Science, Guelph, Ontario, Canada N1G 2W1  相似文献   

3.
Leys, used for grazing or production of forage to be conserved as silage or hay, are very important crops in northern areas. In order to measure the N2 fixation in leys of varying ages and during different parts of the season, detailed measurements were taken of yield, N2 fixation and the amounts of N remaining in the field after harvesting red clover (Trifolium pratense L.)-grass leys at a site in northern Sweden, where they are generally harvested twice per growing season. Entire plants, including stubble and roots, were sampled at the time of first and second harvest and, in addition, at the end of the growing season in three neighbouring fields, carrying a first, a second and a third year ley, respectively. N2 fixation was measured by both 15N isotope dilution (ID) and 15N natural abundance (NA) methods. The proportion of clover dry matter (DM) in the stands increased from the first to the second harvest, but the grasses dominated throughout the entire season, especially below ground. The N concentrations, in both herbage and whole plants, were about twice as high in the clover as in the grasses. Seasonal variations in N concentrations were minor, and total N contents followed the same trends as DM. The clover acquired nearly all of its N from N2 fixation: the proportion of N in clover herbage derived from N2 fixation was often >0.8 throughout the season. The variations in the amounts of N2 fixed during the course of the season corresponded well to the seasonal changes in clover biomass. Amounts of fixed N2 allocated to clover herbage during the whole season were in the range 4 to 6 g N m−2 in this unusually rainy year. Calculations of daily N allocation rates to herbage showed that N uptake rates were similar, and high, in grasses during May–June and July–August, while N2 fixation rates in clover were about 10-fold as high in July–August as in May–June, reflecting the need for N in clover growth. The proportion of N remaining in clover stubble and roots after the first and second harvests was about 60 and 25%, respectively, while about 60% of the N in grasses remained in stubble and roots after both harvests. The considerable amounts of biomass and N that were left in field after harvesting red clover-grass leys are important for re-growth of the plants and provide substantial N fertilization for the next crop in the crop rotation.  相似文献   

4.
Summary Design II matings were made among randomly selected clones of Arlington red clover (Trifolium pratense L.). Progeny were evaluated in vitro on two regeneration media for callus growth and differentiation. Additive genetic variance was a significant source of variability for nearly all traits evaluated, including somatic embryogenesis. In vitro traits, such as rapid callus growth, colony vascularization, root initiation, chlorophyll production and embryogenesis were highly heritable and should respond to breeding and selection. Dominance genetic variance was significant for only a few in vitro characters. Maternal and cytoplasmic factors were significant primarily in the early subcultures. Highly significant additive genetic correlation of performance on two regeneration media was found. A population selected on one of the regeneration media for such characteristics as improved plantlet regeneration, rapid callus growth, long term colony viability or the frequency of root initiation should show correlated improvement on the other medium. No significant differences for embryogenesis were attributable to differences in the regeneration media used. Furthermore, no interaction of additive genetic effects with regeneration media were observed. These data indicate that improvement in the frequency of plantlet regeneration from callus of red clover could effectively be achieved by breeding and selection for embryogenic types.The research reported in this paper (No. 80-3-152) is in connection with a project of the Kentucky Agric. Exp. Stn. and the paper is published with the approval of the director. Part of a thesis submitted by the senior author in partial fulfillment of the requirements for the M.S. degree  相似文献   

5.
Reiter  Karin  Schmidtke  Knut  Rauber  Rolf 《Plant and Soil》2002,238(1):41-55
Pea as a grain legume and red clover as a forage legume in the seeding year were cultivated in two long-term differentiated tillage systems on a loess soil in Germany. A continuous conventional tillage system (plow; CT) and a continuous minimum tillage system (rotary harrow; MT) were established in 1970. With pea and red clover dry matter accumulation and N parameters (N accumulation, Ndfa, N-harvest-index, N balance) were investigated in 1998 and 1999. Differences in the N2 fixation of pea due to the tillage system could clearly be shown whereas grain yields and total N accumulation were equal in both tillage systems and years. In both years a significantly (P < 0.05) higher Ndfa in the MT system was found at least in the final harvest (maturity of pea): 1998/1999, 0.42/0.54 in CT, 0.62/0.75 in MT. The differences in N2 fixation of pea may be explained by the delayed soil N supply in MT at the beginning of the vegetative period. Simplified N balances of pea were -18 and –25 kg N ha–1 in CT and –5 and +1 kg N ha–1 in MT for 1998 and 1999, respectively. Red clover showed no significant differences in the DM and N accumulation between both tillage systems but a year dependent effect caused by different stubble and root yields between the years was apparent. With red clover slightly, but also significantly (P < 0.05) increased Ndfa values were found in the MT system compared to the CT system with 0.55/0.62 in CT (1998/1999) and 0.64/0.71 in MT. However, the difference in Ndfa between the tillage systems (9 percentage points) was much smaller with red clover than with pea (20 and 21 percentage points in 1998 and 1999, respectively). Soil N uptake of red clover using the longer growing season reflected the more adjusted N supply in both long-term differentiated tillage systems, whereas pea in using only a short-term vegetative period reacted stronger to the lower N mineralization in the MT system in springtime.  相似文献   

6.
Summary In vitro, selection is a viable method of selecting herbicide-tolerant crops. This research was to evaluate in vitro selection techniques for enhancing 2,4-D [(2,4-dichlorophenoxy) acetic acid] tolerance in red clover (Trifolium pratense L.). In vivo and in vitro responses to 2,4-D of eight diverse red clover populations were correlated (r=0.77), justifying in vitro selection for 2,4-D tolerance. Suspension cultures of a red clover genotype capable of regeneration were plated onto agar-based nutrient media supplemented with 0.18 mM 2,4-D for selection experiments. After two cycles of selection, 16 2,4-D tolerant callus lines were identified based on visual growth assessment. These lines were evaluated for 2,4-D tolerance (based on 2,4-D content), using a 2,4-D bioassay procedure which consisted of placing selected callus tissue pieces on top of oat (Avena sativa L.) coleoptile or internode sections. The relative amount of 2,4-D in the callus tissue was estimated by the amount of oat section elongation after 24 h. Two of the more tolerant callus lines had 61% and 83% less 2,4-D in their tissues than the susceptible control tissue. These studies indicated that in vitro selection can enhance the levels of 2,4-D tolerance in red clover callus tissue.Florida Agricultural Experiment Station Journal Series No. 8943  相似文献   

7.
Summary Red clover Rhizobium strains, isolated from different locations between latitudes 60° and 63°30′ N in Finland, were tested for their adaptation to low temperatures. 31 strains were tested for growth at 5°C, 10°C, 15°C and 18°C in pure culture. No strain grew at 5°C. At the other temperatures there were differences between the strains, but the same strains grew fast at all temperatures. Ten strains were investigated for nodulation and acetylene reduction in phytotrons in two different climates, one simulating the growing season in southern and the other in northern Finland. There were differences between the strains in their ability to nodulate their host plant, and northern strains showed higher nitrogenase activity than southern strains in the cold climate.  相似文献   

8.
Relationships between gibberellins and floral initiation were investigated in a conditional non-flowering mutant of red clover, Trifolium pratense. Untreated mutant plants will not flower under long-days, but will do so when certain GAs are applied. Gibberellins, A3, A1, A7, and A5 all resulted in both stem elongation and flowering whilst GA4 produced the elongation only. Applications of GA20, GA8 and GA13 under long-days had no detectable effect. Thus, by combining the use of the mutant with the application of different GAs, the correlation between the processes of stem elongation and floral initiation, which is normally strongly expressed in this species, was broken. Endogenous gibberellins shown to be present in normal plants were also found in the mutant genotype. Gibberellins alone were not sufficient to initiate floral development in the mutant, there being an essential element of interaction with long-days. These results are discussed in relation to the nature of the lesion in the mutant and the signal provided by the applied gibberellin.  相似文献   

9.
The short-term effects of a simulated cattle dung pat on N2 fixation and total uptake of N in a perennial ryegrass/white clover mixture was studied in a container experiment using sheep faeces mixed with water to a DM content of 13%. We used a new 15N cross-labelling technique to determine the influence of dung-pat N on N2 fixation in a grass/clover mixture and the uptake of dung N in grass and clover. The proportion of N in clover derived from N2 fixation (%Ndfa) varied between 88–99% during the 16 weeks following application of the dung. There was no effect of dung on the %Ndfa in clover grown in mixture, whereas the %Ndfa in clover grown in pure stand decreased (nominal 2–3%) after dung application. Dung did not influence the amount of N2 fixed, and the uptake of dung N in grass and clover proceeded at an almost constant rate. After 16 weeks, 10% of the applied dung N was taken up by grass and clover, 57% had been incorporated in the soil by faunal activity and 27% remained in residual dung on the soil surface. The dung N unaccounted for (7%) was probably lost by ammonia volatilisation and denitrification. The uptake of dung N in grass/clover mixtures in the field was similarly followed by using simulated 15N-labelled dung pats. The total dry matter production and N yields increased in the 0–30 cm distance from the edge of the dung patch, but the proportion of clover decreased. Thirteen months after application of the dung 4% of the applied dung N was recovered in the harvested herbage, 78% was recovered from the soil and the residual dung, and 18% was not accounted for. It is concluded that N2 fixation in the dung patch border area in grass/clover mixtures is not influenced directly by the release of N from dung pats in the short term. However the amount of N2 fixed may be reduced, if the growth of clover is reduced in the patch border area.  相似文献   

10.
Willow is often used in bio-energy plantations for its potential to function as a renewable energy source, but knowledge about its effect on soil carbon dynamics is limited. Therefore, we investigated the temporal variation in carbon dynamics in willow, focusing on below-ground allocation and sequestration to soil carbon pools. Basket willow plants (Salix viminalis L.) in their second year of growth were grown in pots in a greenhouse. At five times during the plants growth, namely 0, 1, 2, 3 and 4 months after breaking winter dormancy, a subset of the plants were continuously labelled with 14CO2 in an ESPAS growth chamber for 28 days. After the labelling, the plants were harvested and separated into leaves, first and second year stems and roots. The soil was analysed for total C and 14C content as well as soil microbial biomass. Immediately after breaking dormancy, carbon stored in the first year stems was relocated to developing roots and leaves. Almost half the newly assimilated C was used for leaf development the first month of growth, dropping to below 15% in the older plants. Within the second month of growth, secondary growth of the stem became the largest carbon sink in the system, and remained so for the older age classes. Between 31 and 41% of the recovered 14C was allocated to below-ground pools. While the fraction of assimilated 14C in roots and root+soil respiration did not vary with plant age, the amount allocated to soil and soil microbial biomass increased in the older plants, indicating an increasing rhizodeposition. The total amount of soil microbial biomass was 30% larger in the oldest age class than in an unplanted control soil. The results demonstrate a close linkage between photosynthesis and below-ground carbon dynamics. Up to 13% of the microbial biomass consisted of carbon assimilated by the willows within the past 4 weeks, up to 11% of the recovered 14C was found as soil organic matter.  相似文献   

11.
The 15N isotope dilution technique and the N difference method were used to estimate N2 fixation by clover growing in a mixture with ryegrass, in a field experiment and a controlled environment experiment. Values obtained using N difference were approximately 25% lower than those estimated using 15N isotope dilution. In the field experiment there was a measured N benefit to grass growing with clover, equivalent to 42.7 kgN ha-1. The grass in the mixture had a lower atom %15N content and a higher N content than grass in a monoculture; therefore values for N2 fixation were different depending on choice of control plant i.e. monoculture or mixture grass. In the controlled environment experiment there were no significant differences between either the atom %15N contents or the N contents of monoculture grass and grass growing in a mixture with clover. It is concluded that there is a long term indirect transfer of N from clover to associated grass which can lead to errors in estimates of N2 fixation.  相似文献   

12.
M. Werth  Y. Kuzyakov 《Plant and Soil》2006,284(1-2):319-333
Coupling 13C natural abundance and 14C pulse labelling enabled us to investigate the dependence of 13C fractionation on assimilate partitioning between shoots, roots, exudates, and CO2 respired by maize roots. The amount of recently assimilated C in these four pools was controlled by three levels of nutrient supply: full nutrient supply (NS), 10 times diluted nutrient supply (DNS), and deionised water (DW). After pulse labelling of maize shoots in a 14CO2 atmosphere, 14C was traced to determine the amounts of recently assimilated C in the four pools and the δ13C values of the four pools were measured. Increasing amounts of recently assimilated C in the roots (from 8% to 10% of recovered 14C in NS and DNS treatments) led to a 0.3‰ 13C enrichment from NS to DNS treatments. A further increase of C allocation in the roots (from 10% to 13% of recovered 14C in DNS and DW treatments) resulted in an additional enrichment of the roots from DNS to DW treatments by 0.3‰. These findings support the hypothesis that 13C enrichment in a pool increases with an increasing amount of C transferred into that pool. δ13C of CO2 evolved by root respiration was similar to that of the roots in DNS and DW treatments. However, if the amount of recently assimilated C in root respiration was reduced (NS treatment), the respired CO2 became 0.7‰ 13C depleted compared to roots. Increasing amounts of recently assimilated C in the CO2 from NS via DNS to DW treatments resulted in a 1.6‰ δ13C increase of root respired CO2 from NS to DW treatments. Thus, for both pools, i.e. roots and root respiration, increasing amounts of recently assimilated C in the pool led to a δ13C increase. In DW and DNS plants there was no 13C fractionation between roots and exudates. However, high nutrient supply decreased the amount of recently assimilated C in exudates compared to the other two treatments and led to a 5.3‰ 13C enrichment in exudates compared to roots. We conclude that 13C discrimination between plant pools and within processes such as exudation and root respiration is not constant but strongly depends on the amount of C in the respective pool and on partitioning of recently assimilated C between plant pools. Section Editor: H. Lambers  相似文献   

13.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

14.
The photoassimilation of 14CO2 by washed cells of the photosynthetic bacterium Rhodopseudomonas capsulata was greatly inhibited in air. The inhibition was partially reversed by either sparging with argon or by adding inhibitors, e.g. CO [50% (v/v) in air] and NaN3 (0.2 mM), which at these concentrations effectively restricted respiration. The effect of oxygen on the photoassimilation of 14CO2 may be associated with a change in the redox state of the cells resulting in less reducing equivalents being available for this process.  相似文献   

15.
Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using 15N isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously assessed. The soil was labelled either by immobilizing 15N in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which 15N fertilizer is added after sward establishment. Immobilization of 15N in the soil organic matter has not previously been used in studies of N2 fixation in grass/clover pastures. However, this approach was a successful means of labelling, since the 15N enrichment only declined at a very slow rate during the experiment. After the second production year only 10–16% of the applied 15N was recovered in the harvested herbage. The two labelling methods gave, nonetheless, a similar estimate of the percentage of clover N derived from N2 fixation. In pure stand clover, 75–94% of the N was derived from N2 fixation and in the mixture 85–97%. The dry matter yield of the clover in mixture as percentage of total dry matter yield was relatively high and increased from 59% in the first to 65% in the second production year. The average daily N2 fixation rate in the mixture-grown clover varied from less than 0.5 kg N ha−1 day−1 in autumn to more than 2.6 kg N ha−1 day−1 in June. For clover in pure stand the average N2 fixation rate was greater and varied between 0.5 and 3.3 kg N ha−1 day−1, but with the same seasonal pattern as for clover in mixture. The amount of N fixed in the mixture was 23, 187 and 177 kg N ha−1 in the seeding, first and second production year, respectively, whereas pure stand clover fixed 28, 262 and 211 kg N ha−1 in the three years. The apparent transfer of clover N to grass was negligible in the seeding year, but clover N deposited in the rhizosphere or released by turnover of stolons, roots and nodules, contributed 19 and 28 kg N ha−1 to the grass in the first and second production year, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Summary This paper reviews (i) basic studies on the genetics of symbiosis in red clover (a self-sterile species) and subterranean clover (cleistogamous) and (ii) work on selection and plant breeding to increase nitrogen fixation in these hosts.Symbiotic effectiveness in red clover is influenced by many major and minor genes. The highly effective phenotype is inherited in a complex manner associated with early nodulation and the formation of large amounts of persistent bacteroid-containing tissue. Lines bred to fix more nitrogen with one strain ofRhizobium trifolii do so with most but not all other strains examined. They also show slightly increased vigour when grown on nitrate. The highly effective response is correlated with abundant nodulation and an early flowering habit, the evidence from breeding studies indicating that this correlation is not absolute. Normally effective and highly effective nodules have the same specific nitrogenase activities. The expression of the highly effective response is relatively little affected by environmental factors (temperature, light intensity, day length, supplementary carbon-di-oxide). Inbreeding substantially degrades the symbiotic response.Heterosis is shown in crosses between cultivars of subterranean clover but otherwise selection to increase effectiveness in this host was unsuccessful.The relevance of these results (and their physiological aspects) for the improvement of grain legumes is discussed.  相似文献   

17.
The 14CO2 uptake of an aseptically cultured red raspberry clone (Rubus ideaus L.) was examined prior to and after transfer to soil. Individual leaves of transplants, both persistent from culture and new ones, were tested 5 weeks after transplant for 14CO2 uptake capability. Transplant leaves of successive weekly age classes took up 14CO2 at increasing rates per unit area, displaying a spectrum of photosynthetic competence from low levels close to that of leaves from culture, to that of control plants. This is illustrative of acclimatization to the soil environment and was related to transplant light intensity.  相似文献   

18.
Summary Interspecific hybrid clover plants from the cross Trifolium sarosiense Hazsl. X T. pratense L. were obtained in the present investigation. Immature hybrid embryos were excised aseptically from the pistillate parent, T. sarosiense (2 n = 48), and cultured in vitro prior to in situ abortion. Agar-solidified nutrient media modified from that developed previously for tissue and cell cultures of red clover (2 n = 14) were used for embryo rescue.The heart shaped embryos obtained were cultured for 8 to 14 days on a medium containing a high level of sucrose, a moderate level of auxin, and low cytokinin activity. Viable embryos were then transferred to a standard medium with low auxin and moderate cytokinin levels for the direct germination of shoots. Some embryos produced only callus. Plants were regenerated from callus using an alternate culture scheme. Hybrid shoot numbers were increased on a low auxin, high cytokinin medium and subsequently rooted before transfer to soil in the greenhouse.About 10% of the hybrid embryos were rescued using the optimal culture sequence. Five full-sib families of the F1 hybrid were successfully grown to maturity. Root-tip cells of hybrid plants possessed the expected somatic chromosome number of 31. The genetically determined leaf-mark trait carried by the staminate parent and the rhizomatous root habit of the pistillate parent were expressed in hybrid plants.The investigations reported in this paper (No. 81-3-151) were performed in connection with projects of the Kentucky Agricultural Experiment Station and the paper is published with the approval of the Director  相似文献   

19.
Nitrogen fixation in perennial forage legumes in the field   总被引:13,自引:0,他引:13  
Nitrogen acquisition is one of the most important factors for plant production, and N contribution from biological N2 fixation can reduce the need for industrial N fertilizers. Perennial forages are widespread in temperate and boreal areas, where much of the agriculture is based on livestock production. Due to the symbiosis with N2-fixing rhizobia, perennial forage legumes have great potential to increase sustainability in such grassland farming systems. The present work is a summary of a large number of studies investigating N2 fixation in three perennial forage legumes primarily relating to ungrazed northern temperate/boreal areas. Reported rates of N2 fixation in above-ground plant tissues were in the range of up to 373 kg N ha–1 year–1 in red clover (Trifolium pratense L.), 545 kg N ha–1 year–1 in white clover (T. repens L.) and 350 kg N ha–1 year–1 in alfalfa (Medicago sativa L.). When grown in mixtures with grasses, these species took a large fraction of their nitrogen from N2 fixation (average around 80%), regardless of management, dry matter yield and location. There was a large variation in N2 fixation data and part of this variation was ascribed to differences in plant production between years. Studies with experiments at more than one site showed that also geographic location was an important source of variation. On the other hand, when all data were plotted against latitude, there was no simple correlation. Climatic conditions seem therefore to give as high N2 fixation per ha and year in northern areas (around 60°N) as in areas with a milder climate (around 40°N). Analyzing whole plants or just above-ground plant parts influenced the estimate of N2 fixation, and most reported values were underestimated since roots were not included. Despite large differences in environmental conditions, such as N fertilization and geographic location, N2 fixation (Nfix; kg N per ha and year) was significantly (P<0.001) correlated to legume dry matter yield (DM; kg per ha and year). Very rough, but nevertheless valuable estimations of Nfix in legume/grass mixtures (roots not considered) are given by Nfix = 0.026DM + 7 for T. pratense, Nfix = 0.031DM + 24 for T. repens, and Nfix = 0.021DM + 17 for M. sativa.  相似文献   

20.
Summary White clover (Trifolium repens L.) plants grown in pots and supplied with the same concentration x days of15N labelled nitrate, but in contrasting patterns and doses had similar N concentrations but differed in the proportions devived from N2 fixation and nitrate. N2-fixation and nodule dry weight responded rapidly (2–3 days) to changes in nitrate availability. Plants exposed frequently to small doses of nitrate took up more nitrate (and hence relied less on N2-fixation) and had greater dry weights and shoot: root ratios than those exposed to larger doses less often. In mixed ryegrass (Lolium perenne L.)/clover communities clover's ability to either successfully compete for nitrate or fix N2 gave it consistently higher N concentrations than grass whether they were given high or low nitrate nutrient. This higher N concentration was accompanied by greater dry weights than grass in the low nitrate swards but not where high levels of nitrate were applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号