首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chemically defined medium has been developed for isolation of amino acid-requiring mutants of Staphylococcus aureus strain 8325, and for use as a selective medium in transformation assays. Variables affecting transformation of both plasmid and chromosomal markers have been studied. The optimal pH and temperature for transformation are 6.75 to 7.0 and 30 C, respectively. Ca ions are required for transformation, and only cells lysogenic for the phage phi11 can be transformed. Superinfection of competent cells with phi11 does not increase the transformation frequency. Maximal number of transformants is obtained after 20 min of contact between cells and deoxyribonucleic acid. The transformation frequencies for the plasmid marker erythromycin resistance (ero) and the chromosomal markers trp, thy, and cyt are of the same order of magnitude, whereas the frequency for the chromosomal marker tyr is approximately one order of magnitude lower.  相似文献   

2.
Staphylococcus culture 105B was serially treated with 0.05% hydrogen peroxide at 54.4 C or without hydrogen peroxide at this temperature to determine changes in resistance to these conditions and in catalase activity of the surviving populations. Resistance of the final surviving populations to H(2)O(2) treatment and to heat treatment without H(2)O(2) was 5.6 and 4.5 times greater, respectively, than the parent culture. Catalase activities of the cell-free extracts of survivors of the H(2)O(2) treatments and of the heat treatments were 33.56 and 2.69 times greater, respectively, than the control. The untreated control cultures grew in Peptonized Milk (Difco), but addition of sodium pyruvate to the medium was necessary to support growth of survivors.  相似文献   

3.
The persistence of Staphylococcus aureus (Smith) on wool blanket, wool gabardine, cotton sheeting, cotton knit jersey, cotton terry cloth, and cotton wash-and-wear fabrics was studied. The fabrics were exposed to bacterial populations by three methods: direct contact, aerosol, and a lyophilized mixture of bacteria and dust having a high content of textile fibers. The contaminated fabrics were held in 35 or 78% relative humidities at 25 C. In general, the persistence time of S. aureus populations on fabrics held in 35% relative humidity was substantially longer when the fabrics were contaminated by exposure to aerosolized cultures or to dust containing bacteria than when contaminated by direct contact. In a 78% relative humidity, bacterial populations on the fabrics persisted for substantially shorter periods of time regardless of the mode of contamination or fabric type. Cotton wash-and-wear fabric (treated with a modified triazone resin) was the material on which populations of S. aureus persisted for the shortest time. This organism retained its virulence for Swiss mice after being recovered from wool gabardine swatches held 4 weeks in 35% relative humidity and 6 weeks in 78% relative humidity.  相似文献   

4.
Resistance of Photosynthesis to Hydrogen Peroxide in Algae   总被引:18,自引:0,他引:18  
The effects of H2O2 on the photosynthetic fixation of CO2 andon thiol-modulated enzymes involved in the photosynthetic reductionof carbon in algae were studied in a comparison with those inchloroplasts isolated from spinach leaves. In both systems,H2O2-scavenging enzymes were inhibited by addition of 0.1 mMNaN3 1 h prior to the addition of H2O2. A concentration (10-4M) of H2O2 caused strong inhibition of the CO2 fixation by intactspinach chloroplasts, as observed by Kaiser [(1976) Biochim.Biophys. Acta 440: 476], but not that by Euglena and Chlamydomonascells. The same results were also obtained with cells of thecyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803in the presence of 1 mM hydroxylamine. These results indicatethat algal photosynthesis is rather resistant to H2O2. The insusceptibilityto H2O2 of thiolmodulated enzymes, namely, fructose-1,6-bisphosphatase,NADP-glyceraldehyde-3-phosphate dehydrogenase, and ribulose-5-phosphatekinase, was also observed in the chloroplasts of Euglena andChlamydomonas and in cyanobacterial cells. It seems likely thatthe resistance of photosynthesis to H2O2 is due in part to theinsusceptibility of the algal thiol-modulated enzymes to H2O2. (Received April 22, 1995; Accepted June 29, 1995)  相似文献   

5.
Irradiation with ultraviolet (u.v.) light (71 J/m2) reduced the viable count of suspenrsions of Serratia marcescens , grown in a glycerol-salts defined medium, to five in 104 cells. Subsequent incubation of irradiated cells in hydrogen peroxide failed to decrease the survivors, but u.v. irradiation in the presence of hydrogen peroxide reduced the viable count to fewer than two in 106 cells. Cells grown in defined medium with added iron had more measurable catalase activity and were more resistant to hydrogen peroxide alone and to simultaneous treatment with u.v. irradiation and hydrogen peroxide. Cells grown in a non-defined medium contained little iron and measurable catalase activity but were more resistant to hydrogen peroxide. Treatment with toluene, heat killing or sonication increased the catalase activity detected in all cell suspensions and showed that resistance to hydrogen peroxide and to u.v. irradiation in hydrogen peroxide was related to the total catalase activity within cells.  相似文献   

6.
In many Gram-positive bacteria PerR is a major peroxide sensor whose repressor activity is dependent on a bound metal cofactor. The prototype for PerR sensors, the Bacillus subtilis PerRBS protein, represses target genes when bound to either Mn2+ or Fe2+ as corepressor, but only the Fe2+-bound form responds to H2O2. The orthologous protein in the human pathogen Staphylococcus aureus, PerRSA, plays important roles in H2O2 resistance and virulence. However, PerRSA is reported to only respond to Mn2+ as corepressor, which suggests that it might rely on a distinct, iron-independent mechanism for H2O2 sensing. Here we demonstrate that PerRSA uses either Fe2+ or Mn2+ as corepressor, and that, like PerRBS, the Fe2+-bound form of PerRSA senses physiological levels of H2O2 by iron-mediated histidine oxidation. Moreover, we show that PerRSA is poised to sense very low levels of endogenous H2O2, which normally cannot be sensed by B. subtilis PerRBS. This hypersensitivity of PerRSA accounts for the apparent lack of Fe2+-dependent repressor activity and consequent Mn2+-specific repressor activity under aerobic conditions. We also provide evidence that the activity of PerRSA is directly correlated with virulence, whereas it is inversely correlated with H2O2 resistance, suggesting that PerRSA may be an attractive target for the control of S. aureus pathogenesis.  相似文献   

7.
The thermal resistance of four strains of coagulase-positive Staphylococcus aureus was determined in phosphate buffer, whole milk, skim milk, and Cheddar cheese whey. The logarithmic order of death prevailed until about 99.99 to 99.999% of the organisms were destroyed, after which there was a decline in the rate of destruction. The organisms were more resistant in skim milk and Cheddar cheese whey than in phosphate buffer and whole milk. Thermal resistance varied among strains of S. aureus but was consistent with individual strains. As the age of cultures of strain B-120 increased from 12 to 228 hr, the D(55) values increased from 0.95 to 3.0. The thermal resistance of cultures obtained from survivors to partial thermal destruction was similar to that of the parent cultures.  相似文献   

8.
9.
Ascorbate and several polyphenolic compounds have been reported to undergo oxidation in cell culture media to generate hydrogen peroxide (H?0?), but the mechanism underlying this has not been established. We therefore investigated the parameters affecting H?0? production. H?0? gene ration from ascorbate, gallic acid and other phenolic compounds in Dulbecco's Modified Eagles' Medium (DMEM) at 37°C under 95% air - 5% C0? was not significantly inhibited by high (5-10 mM) concentration of EGTA, o-phenanthroline or desferrioxamine, but partial inhibition by EDTA and diethylenetriaminepentaacetic acid (DTPA) was observed. Incubation of DMEM alone at 37°C led to an upward drift of pH, even under an atmosphere of 95% air - 5% C0?. Prevention of this pH rise by increasing the concentration of N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] (Hepes) buffer lowered the levels of H?0? generated by ascorbate and phenolic compounds, but there was still substantial H?0? generated at pH 7.4. Mixtures of ascorbate and phenolic compounds led to less H?0? generation than would be expected from the rates observed with ascorbate or phenolic compounds alone. Ascorbate prevented the loss of gallic acid incubated in DMEM. The role of metal ions and other constituents of the culture medium in promoting H?0? generation is discussed.  相似文献   

10.
A heat-inducible mutant, resistant to macrolide antibiotics (Mac), was isolated from Staphylococcus aureus MS537 in which Mac-resistance was induced by subinhibitory concentrations of erythromycin (EM). After induction at 42 C, this mutant acquired a high resistance to both Mac and lincomycin (LMC). Transduction and biochemical studies revealed that spiramycin (SP)-resistance in this mutant was induced by exposure to a high temperature (42 C) or by treatment with EM in broth but not in phosphate buffer. Induction did not take place when chloramphenicol (CM) was added to the induction mixture. Ribosomes from the mutant cultured at 42 C decreased their affinity for SP and consequently polypeptide synthesis on such ribosomes was not inhibited by SP, when compared with those cultured at 30 C. From these results, it was concluded that alteration of ribosomes took place after induction by exposure at high temperatures or by EM-treatment and that the mechanism of SP-resistance after induction was accounted for by a decrease in SP-binding to ribosomes.  相似文献   

11.
It was demonstrated that spiramycin (SP)-resistance could be related to the decrease in binding of ribosomes to SP and that the SP-binding to ribosomes was related with inhibition of polypeptide synthesis by SP in a cell-free system in staphylococcal strains. These facts were also observed in Mac (macrolide)-inducible strains, in which resistance to Mac antibiotics is enhanced by prior treatment with subinhibitory concentrations of erythromycin. From these results, it was concluded that the mechanism of resistance to Mac antibiotics is accounted for by alteration of ribosomes in staphylococcal strains and that this alteration of ribosomes is caused not only by mutation but also by induction.  相似文献   

12.
13.
Antibacterial and inducer activities concerning inducible macrolide resistance in Staphylococcus aureus were investigated using 32 erythromycin, oleandomycin and other macrolide antibiotic derivatives and analogues. The macrolides were classified into five groups from very high to none according to their inducer activity.  相似文献   

14.
15.
Plasmid-linked Resistance to Inorganic Salts in Staphylococcus aureus   总被引:104,自引:44,他引:60       下载免费PDF全文
The penicillinase plasmids, a series of extrachromosomal resistance factors in Staphylococcus aureus, were found to carry determinants of resistance to a series of inorganic ions as well as resistance to penicillin and, in some cases, erythromycin. Most of the ions involved were inhibitory but not lethal to the bacteria; the resistance markers conferred an increase in resistance by comparison with susceptible organisms of between 3- and 100-fold, depending on the ion involved. Separate genetic loci for resistance to arsenate, arsenite, lead, cadmium, mercuric, and bismuth ions were demonstrated. Resistance to antimony and resistance to zinc were also found but were not separated genetically from resistance to arsenite and cadmium, respectively. The ion resistance markers appeared to form a cluster on the plasmid, with no other known marker within it. Naturally occurring plasmids were observed that lacked one or more of these ion resistance markers, as well as penicillinase-negative strains that were resistant to one or more of the ions. The patterns of markers carried by these various strains may provide some understanding of the evolution of a plasmid linkage group.  相似文献   

16.
17.
Staphylococcus aureus is one of the major causes of mastitis in dairy animals and its resistance against multiple antimicrobials always remains crucial concern. Present investigation was carried out to detect the distribution of antibiotic-resistant genes of S. aureus isolates. Isolates (128) of S. aureus from mastitic milk were collected, tested for antibiotics with disc-diffusion method, and resistant genes mecA, linA, msrA msrB, vatA, vatB, vatC ermA, ermC tetK, tetM and aacA-D were detected by PCR. The phenotypic antibiotics resistance percent in S. aureus isolates was classified as tetracycline (36.7), gentamycin (30.5), streptomycin (26.6), kanamycin (25.8) and penicillin G (22.7). All the isolates were susceptible to vancomycin. Among isolates, 10.2% were observed as methicillin-resistant. The distribution of antibiotic-resistant genes was linA (51.6) followed by msrB (46.1), tetK + M (34.4), msrA and aacA-D (26.6%). Different antibiotic-resistant genes combinations (mecA/linA-2; mecA/aacA-D/tetK/linA/msrB-3; mecA/linA/msrA/msrB-3; aacA-D/linA/msrA/msrB-4; aacA-D/linA/msrB-7; linA/msrA/msrB-10; tetK/linA/msrA/msrB-11; aacA/tetK/linA/msrB-12 isolates) were observed. All the isolates lacked amplification of vatA, vatB, ermA and ermC genes. Molecular typing resulted genetic variation in protein A (6–12 repeats) and coagulase genes (A–E patterns) were observed. Coagulase A and D genotypes were more prevalent in antibiotic-resistant isolates, while E, B and C in susceptible ones. The significant observation was the prevalence of methicillin-resistant S. aureus, which were resistant to multiple antibiotics. Findings revealed the status of resistant isolates in herd that might be helpful in treatment, controlling of resistant strains and culling of cows for mastitis reduction.  相似文献   

18.
19.
Resistance heterogeneity in methicillin-resistant Staphylococcus aureus   总被引:2,自引:0,他引:2  
Abstract A striking feature of methicillin resistance in Staphylococcus aureus is the considerable heterogeneity of expression of resistance by cells in clonal populations: some are sensitive (or almost so), others are highly resistant, and others show intermediate resistance to the antibiotic. Subclones generally are also heterogeneous, suggesting variable inheritance or control of expression of resistance.
The degree of heterogeneity and mean resistance is influenced by environmental parameters: temperature, osmolality, pH, light, anaerobiosis, chelating agents and metal ions, and prior exposure to β-lactam antibiotics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号