首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by +/- 5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 +/- 3 to 67 +/- 3 mL/kg; mean circulatory filling pressure increased from 7.1 +/- 0.2 to 8.0 +/- 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 +/- 0.2 to 2.1 +/- 0.3 mmHg; and cardiac output increased from 71.8 +/- 3.9 to 96.8 +/- 3.3 mL.min-1.kg-1. Total vascular compliance was not changed (2.1 +/- 0.1 mL.kg-1.mmHg-1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Based on a dynamic computational model of the circulation, Burkhoff and Tyberg (Am J Physiol Heart Circ Physiol 265: H1819-H1828, 1993) concluded that the rise in pulmonary venous pressure (Pvp) with left ventricular (LV) dysfunction requires a decrease in vascular capacitance and transfer of unstressed volume to stressed volume (nu). We argue that the values they used for venous resistance (Rvs), venous compliance (Cvs), and nu were too low, and changing these values significantly changes the conclusion. We used a computational model of the circulation that was similar to theirs, but we made Rvs four times higher (0.06 versus 0.015 mmHg.s.ml(-1)), Cvs larger (110 versus 70 ml/mmHg), and nu larger (1,400 versus 750 ml); all other parameters, including those for the heart, were essentially the same. We simulated left ventricular dysfunction by decreasing end-systolic elastance (Eeslv) as they did and examined changes in cardiac output, arterial blood pressure, and Pvp. We then examined the effect of changes in Rvs, heart rate, and nu when Eeslv was depressed with and without pericardial constraint. In contrast to their findings, with our parameters the model predicts that decreasing Eeslv substantially increases Pvp. Furthermore, increasing systemic vascular resistance or decreasing Rvs or heart rate produces large increases in Pvp when Eeslv is reduced. Pericardial constraint limits the changes in Pvp. In conclusion, when Rvs and Cvs are increased, baseline nu must be higher to maintain normal cardiac output. This increased volume can shift between compartments under flow conditions and account for the increase in Pvp with decreased left ventricular function even without recruitment of unstressed volume.  相似文献   

3.
We conducted a series of studies to develop and test a rapid, noninvasive method to measure limb venous compliance in humans. First, we measured forearm volume (mercury-in-Silastic strain gauges) and antecubital intravenous pressure during inflation of a venous collecting cuff around the upper arm. Intravenous pressure fit the regression line, -0.3 +/- 0.7 + 0.95 +/- 0.02. cuff pressure (r = 0.99 +/- 0.00), indicating cuff pressure is a good index of intravenous pressure. In subsequent studies, we measured forearm and calf venous compliance by inflating the venous collecting cuff to 60 mmHg for 4 min, then decreasing cuff pressure at 1 mmHg/s (over 1 min) to 0 mmHg, using cuff pressure as an estimate of venous pressure. This method produced pressure-volume curves fitting the quadratic regression (Deltalimb volume) = beta(0) + beta(1). (cuff pressure) + beta(2). (cuff pressure)(2), where Delta is change. Curves generated with this method were reproducible from day to day (coefficient of variation: 4.9%). In 11 subjects we measured venous compliance via this method under two conditions: with and without (in random order) superimposed sympathetic activation (ischemic handgrip exercise to fatigue followed by postexercise ischemia). Calf and forearm compliance did not differ between control and sympathetic activation (P > 0.05); however, the data suggest that unstressed volume was reduced by the maneuver. These studies demonstrate that venous pressure-volume curves can be generated both rapidly and noninvasively with this technique. Furthermore, the results suggest that although whole-limb venous compliance is under negligible sympathetic control in humans, unstressed volume can be affected by the sympathetic nervous system.  相似文献   

4.
When right atrial pressure (Pra) is greater than zero (atmospheric pressure), cardiac output is determined by the intersection of two functions, cardiac function and return function, which is used here to mean the determinants of venous return. When Pra < or = 0, flow is only determined by circuit function. The objective of this analysis was to determine the potential changes in return function that need to occur to allow the maximum cardiac output during exercise when Pra < or = 0 or is constant. The analysis expands on the model of Green and Jackman and includes the effects of changes in circuit parameters, including venous resistance, changes in capacitance, and muscle contractions. The analysis is based on the model of the circulation proposed by Permutt and co-workers, which assumes that the systemic circulation has two lumped compliant regions in parallel with independent inflow and outflow resistances. Changes in total flow in this model can come about by changes in the distribution of flow between the regions, recruitment of unstressed vascular volume, and changes in the regional venous resistances. The data for the analysis are from previous animal studies and are normalized to a 70-kg man. The major conclusions are that, to achieve the high cardiac output that occurs at peak exercise, there need to be marked changes in the distribution of blood flow, recruitment of unstressed volume, and the venous resistance draining vascular beds. A consequence of the increase in peripheral flow is a marked increase in pressure in the veins of the working muscle. Muscle contractions are potentially a very important mechanism for transiently decreasing this pressure and preventing excessive filtration of plasma during exercise.  相似文献   

5.
Based on observations that as cardiac output (as determined by an artificial pump) was experimentally increased the right atrial pressure decreased, Arthur Guyton and coworkers proposed an interpretation that right atrial pressure represents a back pressure restricting venous return (equal to cardiac output in steady state). The idea that right atrial pressure is a back pressure limiting cardiac output and the associated idea that "venous recoil" does work to produce flow have confused physiologists and clinicians for decades because Guyton's interpretation interchanges independent and dependent variables. Here Guyton's model and data are reanalyzed to clarify the role of arterial and right atrial pressures and cardiac output and to clearly delineate that cardiac output is the independent (causal) variable in the experiments. Guyton's original mathematical model is used with his data to show that a simultaneous increase in arterial pressure and decrease in right atrial pressure with increasing cardiac output is due to a blood volume shift into the systemic arterial circulation from the systemic venous circulation. This is because Guyton's model assumes a constant blood volume in the systemic circulation. The increase in right atrial pressure observed when cardiac output decreases in a closed circulation with constant resistance and capacitance is due to the redistribution of blood volume and not because right atrial pressure limits venous return. Because Guyton's venous return curves have generated much confusion and little clarity, we suggest that the concept and previous interpretations of venous return be removed from educational materials.  相似文献   

6.
Elderly female hypertensives with arterial stiffening constitute a majority of patients with heart failure with preserved ejection fraction (HFpEF), a condition characterized by inability to increase cardiac stroke volume (SV) with physical exercise. As SV is determined by the interaction between the left ventricle (LV) and its load, we wished to study the role of arterial hemodynamics for exertional SV reserve in patients at high risk of HFpEF. Twenty-one elderly (67 ± 9 yr) female hypertensive patients were studied at rest and during supine bicycle stress using echocardiography including pulsed-wave Doppler to record flow in the LV outflow tract and arterial tonometry for central arterial pressure waveforms. Arterial compliance was estimated based on an exponential relationship between pressure and volume. The ratio of aortic pressure-to-flow in early systole was used to derive characteristic impedance, which was subsequently subtracted from total resistance (mean arterial pressure/cardiac output) to yield systemic vascular resistance (SVR). It was found that patients with depressed SV reserve (NoRes; reserve <15%; n = 10) showed decreased arterial compliance during exercise, while patients with SV reserve ≥15% (Res; n = 11) showed increased compliance. Exercise produced parallel increases in LV end-diastolic volume and arterial volume in Res patients while NoRes patients exhibited a lesser decrease in SVR and a drop in effective arterial volume. Poor SV reserve in elderly female hypertensives is due to simultaneous failure of LV preload and arterial vasodilatory reserves. Abnormal arterial function contributes to a high risk of HFpEF in these patients.  相似文献   

7.
Central venous blood pressure (P(ven)) increases in response to hypoxia in rainbow trout (Oncorhynchus mykiss), but details on the control mechanisms of the venous vasculature during hypoxia have not been studied in fish. Basic cardiovascular variables including P(ven), dorsal aortic blood pressure, cardiac output, and heart rate were monitored in vivo during normoxia and moderate hypoxia (P(W)O(2) = approximately 9 kPa), where P(W)O(2) is water oxygen partial pressure. Venous capacitance curves for normoxia and hypoxia were constructed at 80-100, 90-110, and 100-120% of total blood volume by transiently (8 s) occluding the ventral aorta and measure P(ven) during circulatory arrest to estimate the mean circulatory filling pressure (MCFP). This allowed for estimates of hypoxia-induced changes in unstressed blood volume (USBV) and venous compliance. MCFP increased due to a decreased USBV at all blood volumes during hypoxia. These venous responses were blocked by alpha-adrenoceptor blockade with prazosin (1 mg/kg body mass). MCFP still increased during hypoxia after pretreatment with the adrenergic nerve-blocking agent bretylium (10 mg/kg body mass), but the decrease in USBV only persisted at 80-100% blood volume, whereas vascular capacitance decreased significantly at 90-110% blood volume. In all treatments, hypoxia typically reduced heart rate while cardiac output was maintained through a compensatory increase in stroke volume. Despite the markedly reduced response in venous capacitance after adrenergic blockade, P(ven) always increased in response to hypoxia. This study reveals that venous capacitance in rainbow trout is actively modulated in response to hypoxia by an alpha-adrenergic mechanism with both humoral and neural components.  相似文献   

8.
Cardiac pressure-volume loop analysis is the “gold-standard” in the assessment of load-dependent and load-independent measures of ventricular systolic and diastolic function. Measures of ventricular contractility and compliance are obtained through examination of cardiac response to changes in afterload and preload. These techniques were originally developed nearly three decades ago to measure cardiac function in large mammals and humans. The application of these analyses to small mammals, such as mice, has been accomplished through the optimization of microsurgical techniques and creation of conductance catheters. Conductance catheters allow for estimation of the blood pool by exploiting the relationship between electrical conductance and volume. When properly performed, these techniques allow for testing of cardiac function in genetic mutant mouse models or in drug treatment studies. The accuracy and precision of these studies are dependent on careful attention to the calibration of instruments, systematic conduct of hemodynamic measurements and data analyses. We will review the methods of conducting pressure-volume loop experiments using a conductance catheter in mice.  相似文献   

9.
The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital-anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.  相似文献   

10.
When oxygen delivery to active skeletal muscle is insufficient for the metabolic demands, afferent nerves within muscles are activated, which elicit reflex increases in heart rate (HR), cardiac output (CO), and arterial pressure (AP), termed the muscle metaboreflex (MMR). To what extent the increases in CO are the result of increased ventricular contractility is unclear. A widely accepted index of contractility is maximal left ventricular elastance (Emax), the slope of the end-systolic pressure-volume relationship, such as during rapidly imposed reductions in preload. The objective of the present study was to determine whether MMR activation elicits increases in Emax. Experiments were performed using conscious dogs chronically instrumented to measure left ventricular pressure and volume at rest and during mild or moderate treadmill exercise with and without partial hindlimb ischemia to elicit MMR responses. At both workloads, MMR activation significantly increased CO, HR, AP, and maximum rate of change of left ventricular pressure. During both mild and moderate exercise, MMR activation increased Emax to 159.6 +/- 8.83 and 155.8 +/- 6.32% of the exercise value under free-flow conditions, respectively. We conclude that the increase of ventricular elastance associated with MMR activation indicates that a substantial increase in ventricular contractility contributes to the rise in CO during dynamic exercise.  相似文献   

11.
The equilibrium pressure obtained during simultaneous occlusion of hepatic vascular inflow and outflow was taken as the reference estimate of hepatic vascular distending pressure (P(hd)). P(hd) at baseline was 1.1 +/- 0.2 (mean +/- SE) mmHg higher than hepatic vein pressure (P(hv)) and 0.7 +/- 0.3 mmHg lower than portal vein pressure (P(pv)). Norepinephrine (NE) infusion increased P(hd) by 1. 5 +/- 0.5 mmHg and P(pv) by 3.7 +/- 0.6 mmHg but did not significantly increase P(hv). Hepatic lobar vein pressure (P(hlv)) measured by a micromanometer tipped 2-Fr catheter closely resembled P(hd) both at baseline and during NE-infusion. Dynamic pressure-volume (PV) curves were constructed from continuous measurements of P(hv) and hepatic blood volume increases (estimated by sonomicrometry) during brief occlusions of hepatic vascular outflow and compared with static PV curves constructed from P(hd) determinations at five different hepatic volumes. Estimates of hepatic vascular compliance and changes in unstressed blood volume from the two methods were in close agreement with hepatic compliance averaging 32 +/- 2 ml. mmHg(-1). kg liver(-1). NE infusion reduced unstressed blood volume by 110 +/- 38 ml/kg liver but did not alter compliance. In conclusion, P(hlv) reflects hepatic distending pressure, and the construction of dynamic PV curves is a fast and valid method for assessing hepatic compliance and changes in unstressed blood volume.  相似文献   

12.
We developed a mathematical model describing the interaction between the heart and the arterial system. The model was constructed and tested on basis of invasive hemodynamic data in six sheep. Data from a first group of three animals (49 cardiac cycles) were used to assess a template time-varying elastance curve for the left ventricle, while the baseline steady-state data of a second group of three animals were used to assess reference cardiac and arterial parameters in sheep. The model is fully characterized by nine parameters, which were converted into 6 dimensionless numbers using the Buckingham pi theorem. The model was then used to generate LV pressure and volume and aortic pressure and flow for 86 conditions obtained by varying parameters 50 to 200% of their reference value. Systolic (SBP) and diastolic (DBP) blood pressure and stroke volume (SV) were determined from these model-generated curves and multiple linear regression analysis yielded the following expressions: SBP = Pisovolumic [0.638 - 0.0773 Emax C + 0.0507 RC/T] (r2 = 0.89); DBP = Pisovolumic [0.438-0.0712 Emax C + 0.0655RC/T] (r2 = 0.88) and SV = LVEDV [1.265-1.040 LVEDV/(LVEDV - Vd) + 0.125 Emax C-0.0777RC/T] (r2 = 0.93) with Pisovolumic = Emax (LVEDV - Vd), Emax and Vd being the slope and intercept of the end-systolic pressure-volume relation, R and C the total peripheral resistance and compliance, LVEDV the left ventricular end-diastolic volume, and T the cardiac cycle length. These expressions were validated using data from the second group of three animals obtained during vena cava occlusion at baseline and during administration of dobutamine (61 cycles). The correlation between measured and predicted values was 0.98, 0.97 and 0.92 for SBP, DBP and SV, respectively. Compared to the measured values, SBP and DBP were, on average, underestimated by 5 and 6mmHg, respectively, and SV overestimated by 1.4 ml. We conclude that the derived expressions for blood pressure and stroke volume remain valid in the intact sheep for various hemodynamic conditions, and, taking into account their dimensionless form, may hold in other species and in humans.  相似文献   

13.
Intrahepatic blood volume-pressure relationships were studied using plethysmography to measure hepatic blood volume and a hepatic venous long-circuit to control intrahepatic pressure. In cats anesthetized with pentobarbital or with ketamine-chloralose, hemorrhage (to reduce hepatic blood flow to 60% of control) caused marked reductions in hepatic blood volume and intrahepatic pressure but did not significantly change hepatic blood volume-pressure relationships. We were unable to demonstrate an active reflex venous response to hemorrhage in these preparations, although a large passive response occurred. The volume-pressure relationships in innervated livers were different from those in denervated livers: apparent venous compliance was much greater and apparent unstressed volume was zero or negative. Hepatic nerve stimulation in denervated livers caused a marked decrease in hepatic blood volume at low intrahepatic pressures but failed to alter hepatic blood volumes at high intrahepatic pressures (15 mmHg) (1 mmHg = 133.3 Pa). This resulted in large apparent compliances and apparently negative unstressed volumes, as seen in the innervated livers. Thus blood volume-pressure relationships in innervated livers may not give valid measurements of compliance and unstressed volume. A remarkable feature in all these experiments was the linearity of the relationship between hepatic blood volume and intrahepatic pressure. Exudation of fluid begins at higher intrahepatic pressures in innervated compared with denervated livers.  相似文献   

14.
Microgravity is associated with an impaired stroke volume and, therefore, cardiac output response to orthostatic stress. We hypothesized that a decreased venous filling pressure due to increased venous compliance may be an important contributing factor in this response. We used a constant flow, constant right atrial pressure cardiopulmonary bypass procedure to measure total systemic vascular compliance (C(T)), arterial compliance (C(A)), and venous compliance (C(V)) in seven control and seven 21-day hindlimb unweighted (HLU) rats. These compliance values were calculated under baseline conditions and during an infusion of 0.2 microg*kg(-1)*min(-1) norepinephrine (NE). The change in reservoir volume, which reflects changes in unstressed vascular volume (DeltaV(0)) that occurred upon infusion of NE, was also measured. C(T) and C(V) were larger in HLU rats both at baseline and during the NE infusion (P < 0.05). Infusion of NE decreased C(T) and C(V) by ~20% in both HLU and control rats (P < 0.01). C(A) was also significantly decreased in both groups of rats by NE (P < 0.01), but values of C(A) were similar between HLU and control rats both at baseline and during the NE infusion. Additionally, the NE-induced DeltaV(0) was attenuated by 53% in HLU rats compared with control rats (P < 0.05). The larger C(V) and attenuated DeltaV(0) in HLU rats could contribute to a decreased filling pressure during orthostasis and thus may partially underlie the mechanism leading to the exaggerated fall in stroke volume and cardiac output seen in astronauts during an orthostatic stress after exposure to microgravity.  相似文献   

15.
The cardiovascular effects of endothelin (ET)-1 and the recently sequenced homologous trout ET were examined in unanesthetized trout, and vascular capacitance curves were constructed to evaluate the responsiveness of the venous system to ET-1. A bolus dose of 667 pmol/kg ET-1 doubled ventral aortic pressure; produced a triphasic pressor-depressor-pressor response in dorsal aortic pressure (P(DA)); increased central venous pressure, gill resistance, and systemic resistance; and decreased cardiac output, heart rate, and stroke volume. These responses were dose dependent. Bolus injection of trout ET (333 or 1,000 pmol/kg) produced essentially identical, dose-dependent cardiovascular responses as ET-1. Dorsal aortic infusion of 1 and 3 pmol. kg(-1). min(-1) ET-1 and central venous infusion into the ductus Cuvier of 0.3 and 1 pmol. kg(-1). min(-1) produced similar dose-dependent cardiovascular responses, although the increase in P(DA) became monophasic. The heightened sensitivity to central venous infusion was presumably due to the more immediate exposure of the branchial vasculature to the peptide. Infusion of 1 pmol. kg(-1). min(-1) ET-1 decreased vascular compliance but had no effect on unstressed blood volume. These results show that ETs affect a variety of cardiovascular functions in trout and that branchial vascular resistance and venous compliance are especially sensitive. The multiplicity of effectors stimulated by ET suggests that this peptide was extensively integrated into cardiovascular function early on in vertebrate phylogeny.  相似文献   

16.
Vascular capacitance describes the pressure-volume relationship of the circulatory system. The venous vasculature, which is the main capacitive region in the circulation, is actively controlled by various neurohumoral systems. In terrestrial animals, vascular capacitance control is crucial to prevent orthostatic blood pooling in dependent limbs, while in aquatic animals like fish, the effects of gravity are cancelled out by hydrostatic forces making orthostatic blood pooling an unlikely concern for these animals. Nevertheless, changes in venous capacitance have important implications on cardiovascular homeostasis in fish since it affects venous return and cardiac filling pressure (i.e. central venous blood pressure), which in turn may affect cardiac output. The mean circulatory filling pressure is used to estimate vascular capacitance. In unanaesthetized animals, it is measured as the central venous plateau pressure during a transient stoppage of cardiac output. So far, most studies of venous function in fish have addressed the situation in teleosts (notably the rainbow trout, Oncorhynchus mykiss), while any information on elasmobranchs, cyclostomes and air-breathing fishes is more limited. This review describes venous haemodynamic concepts and neurohumoral control systems in fish. Particular emphasis is placed on venous responses to natural cardiovascular challenges such as exercise, environmental hypoxia and temperature changes.  相似文献   

17.
We have investigated the effect of positive end-expiratory pressure ventilation (PEEP) on regional splanchnic vascular capacitance. In 12 anesthetized dogs hepatic and splenic blood volumes were assessed by sonomicrometry. Vascular pressure-diameter curves were defined by obstructing hepatic outflow. With 10 and 15 cmH2O PEEP portal venous pressure increased 3.1 +/- 0.3 and 5.1 +/- 0.4 mmHg (P less than 0.001) while hepatic venous pressure increased 4.9 +/- 0.4 and 7.3 +/- 0.4 mmHg (P less than 0.001), respectively. Hepatic blood volume increased (P less than 0.01) 3.8 +/- 0.9 and 6.3 +/- 1.4 ml/kg body wt while splenic volume decreased (P less than 0.01) 0.8 +/- 0.2 and 1.3 +/- 0.2 ml/kg body wt. The changes were similar with closed abdomen. The slope of the hepatic vascular pressure-diameter curves decreased with PEEP (P less than 0.01), possibly reflecting reduced vascular compliance. There was an increase (P less than 0.01) in unstressed hepatic vascular volume. The slope of the splenic pressure-diameter curves was unchanged, but there was a significant (P less than 0.05) decrease in unstressed diameter during PEEP. In conclusion, hepatic blood volume increased during PEEP. This was mainly a reflection of passive distension due to elevated venous pressures. The spleen expelled blood and thus prevented a further reduction in central blood volume.  相似文献   

18.
Effective vascular compliance was measured repeatedly in dogs without circulatory arrest utilizing a closed-circuit venous bypass system and constant cardiac output. Compliance, determined by the delta V/delta P relationship at the end of a 1-min infusion of 5% of the circulating volume into the inferior vena cava, was independent of the initial venous pressure, total circulating volume and systemic arterial pressure. It remained constant over a 3 h experimental period at 1.55 plus or minus 0.05 ml (mm Hg)-1-kb-1 body weight. Elevation of mean left atrial pressure and mean pulmonary arterial pressure by gradual aortic constriction was associated with a large and significant reduction in vascular compliance to a value of 1.14 plus or minus 0.06 ml (mm Hg)-1-kg-1 after 2 h. This reduction was independent of the initial venous pressure and total circulating volume but was associated with the changes in left atrial and pulmonary artery pressures and an increase in plasma catecholamine concentrations. The mechanism responsible for the reduction in effective compliance is not clear from the present experiments. Increased circulating catecholamines and sympathetic nerve traffic resulting from baro- and volume receptor stimulation in the vascular tree may be the causative mechanism.  相似文献   

19.
This study was conducted to determine the effects of chronic combined pulmonary stenosis and pulmonary insufficiency (PSPI) on right (RV) and left ventricular (LV) function in young, growing swine. Six pigs with combined PSPI were studied, and data were compared with previously published data of animals with isolated pulmonary insufficiency and controls. Indexes of systolic function (stroke volume, ejection fraction, and cardiac functional reserve), myocardial contractility (slope of the end-systolic pressure-volume and change in pressure over time-end-diastolic volume relationship), and diastolic compliance were assessed within 2 days of intervention and 3 mo later. Magnetic resonance imaging was used to quantify pulmonary insufficiency and ventricular volumes. The conductance catheter was used to obtain indexes of the cardiac functional reserve, diastolic compliance, and myocardial contractility from pressure-volume relations acquired at rest and under dobutamine infusion. In the PSPI group, the pulmonary regurgitant fraction was 34.3 +/- 5.8%, the pressure gradient across the site of pulmonary stenosis was 20.9 +/- 20 mmHg, and the average RV peak systolic pressure was 70% systemic at 12 wk follow-up. Biventricular resting cardiac outputs and cardiac functional reserves were significantly limited (P < 0.05), LV diastolic compliance significantly decreased (P < 0.05), but RV myocardial contractility significantly enhanced (P < 0.05) compared with control animals at 3-mo follow-up. In the young, developing heart, chronic combined PSPI impairs biventricular systolic pump function and diastolic compliance but preserves RV myocardial contractility.  相似文献   

20.
During mechanical ventilation, increased pulmonary vascular resistance (PVR) may decrease right ventricular (RV) performance. We hypothesized that volume loading, by reducing PVR, and, therefore, RV afterload, can limit this effect. Deep anesthesia was induced in 16 mongrel dogs (8 oleic acid-induced acute lung injury and 8 controls). We measured ventricular pressures, dimensions, and stroke volumes during positive end-expiratory pressures of 0, 6, 12, and 18 cmH(2)O at three left ventricular (LV) end-diastolic pressures (5, 12, and 18 mmHg). Oleic acid infusion (0.07 ml/kg) increased PVR and reduced respiratory system compliance (P < 0.05). With positive end-expiratory pressure, PVR was greater at a lower LV end-diastolic pressure. Increased PVR was associated with a decreased transseptal pressure gradient, suggesting that leftward septal shift contributed to decreased LV preload, in addition to that caused by external constraint. Volume loading reduced PVR; this was associated with improved RV output and an increased transseptal pressure gradient, which suggests that rightward septal shift contributed to the increased LV preload. If PVR is used to reflect RV afterload, volume loading appeared to reduce PVR, thereby improving RV and LV performance. The improvement in cardiac output was also associated with reduced external constraint to LV filling; since calculated PVR is inversely related to cardiac output, increased LV output would reduce PVR. In conclusion, our results, which suggest that PVR is an independent determinant of cardiac performance, but is also dependent on cardiac output, improve our understanding of the hemodynamic effects of volume loading in acute lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号