首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen stimulates cell proliferation in breast cancer. The biological effects of estrogen are mediated through two intracellular receptors, estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta). However, the role of ERs in the proliferative action of estrogen is not well established. Recently, it has been known that ER activates phosphatidylinositol-3-OH kinase (PI3K) through binding with the p85 regulatory subunit of PI3K. Therefore, possible mechanisms may include ER-mediated phosphoinositide metabolism with subsequent formation of phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), which is generated from phosphatidylinositol 4,5-bisphosphate via PI3K activation. The present study demonstrates that 17beta-estradiol (E2) up-regulates PI3K in an ERalpha-dependent manner, but not ERbeta, and stimulates cell growth in breast cancer cells. In order to study this phenomenon, we have treated ERalpha-positive MCF-7 cells and ERalpha-negative MDA-MB-231 cells with 10nM E2. Treatment of MCF-7 cells with E2 resulted in a marked increase in PI3K (p85) expression, which paralleled an increase in phospho-Akt (Ser-473) and PIP(3) level. These observations also correlated with an increased activity to E2-induced cell proliferation. However, these effects of E2 on breast cancer cells were not observed in the MDA-MB-231 cell line, indicating that the E2-mediated up-regulation of PI3K/Akt pathway is ERalpha-dependent. These results suggest that estrogen activates PI3K/Akt signaling through ERalpha-dependent mechanism in MCF-7 cells.  相似文献   

2.
Incubation of cultured bovine adrenal medullary cells with 17beta-estradiol (E(2)) (0.3-100nM) or membrane-impermeable E(2)-bovine serum albumin (100nM) acutely increased (14)C-catecholamine synthesis from [(14)C]tyrosine. The stimulatory effect of E(2) was not inhibited by ICI182,780, a nuclear estrogen receptor inhibitor. E(2) also increased tyrosine hydroxylase activity and p44/42MAPK phosphorylation, the former of which was attenuated by U0126, an inhibitor of p44/42MAPK kinase. The plasma membrane isolated from the gland showed two classes of specific binding sites of [(3)H]E(2) with apparent K(d)s of 3.2 and 106nM, and B(max)s of 0.44 and 8.5pmol/mg protein, respectively. The high-affinity binding of [(3)H]E(2) was most strongly inhibited by E(2) and phytoestrogens, and to lesser extents by other steroid hormones, while it was enhanced by ICI182,780 and environmental estrogenic pollutants. These findings suggest that E(2) acutely stimulates catecholamine synthesis via activation of p44/42MAPK through unique estrogen receptors in the plasma membrane of bovine adrenal medulla.  相似文献   

3.
Estrogen regulates various cytokines and growth factors in estrogen receptor (ER)-positive human breast cancer. Receptor activator of NF-κB ligand (RANKL) is an essential cytokine for osteoclasts, whereas osteoprotegerin (OPG) is a soluble inhibitor for RANKL. We analyzed the regulation of the RANKL/OPG system by estrogens and androgens in the ER-positive breast cancer cell line MCF-7 and the ER-negative breast cancer cell line MDA-MB-231. In MCF-7 cells, which predominantly express ER-α, 17β-estradiol and testosterone dose-dependently decreased OPG mRNA levels and protein secretion by 70 and 65%, respectively (p < 0.0001 by ANOVA). The inhibition of OPG production by 17β-estradiol and testosterone was specifically prevented by the pure anti-estrogen ICI 182,780, and the testosterone effect was prevented by an aromatase inhibitor. In conclusion, 17β-estradiol suppressed OPG production by human breast cancer cell lines in a dose-dependent and specific manner, indicating that the RANKL/OPG cytokine system is an estrogen-responsive target in breast cancer.  相似文献   

4.
Several observational studies have shown that estrogen replacement therapy decreases cardiovascular mortality and morbidity in postmenopausal women. However, The Women's Health Initiative (WHI) study has found that women receiving estrogen plus progestin had a significantly higher risk of breast cancer, coronary heart disease, stroke, and pulmonary embolus. In the present study, we examined whether estrogen prevents mechanisms that relate to plaque formation by inhibiting monocyte adhesion to endothelial cells. ECV304 cells, an endothelial cell line that normally expresses minimal estrogen receptor (ER)alpha, were transfected with an ERalpha expression plasmid. Treatment with tumor necrosis factor (TNF)-alpha increased expression of vascular cell adhesion molecule (VCAM)-1 mRNA, activation of nuclear factor-kappaB (NF-kappaB), and U937 cell adhesion in ECV304 cells. These effects of TNF-alpha were not significantly inhibited by pretreatment of native ECV304 cells with 17beta-estradiol (E(2)). In ECV304 cells overexpressing ERalpha, E(2) significantly inhibited the effects of TNF-alpha on NF-kappaB activation, VCAM-1 expression, and U937 cell adhesion. These findings suggest E(2) suppresses inflammatory cell adhesion to vascular endothelial cells that possess functional estrogen receptors. The mechanism of suppression may involve inhibition of NF-kappaB-mediated up-regulation of VCAM-1 expression induced by atherogenic stimuli. E(2) may prevent plaque formation, as first stage of atheroscrelosis through inhibiting adhesion monocytes to endothelial cell. Actions of estrogen replacement therapy can be assessed in terms of densities of functional ERalpha.  相似文献   

5.
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.  相似文献   

6.
The discovery that the hop constituent 8-prenylnaringenin (8PN) shows potent estrogenic activity, higher than that of the known phytoestrogens coumestrol, genistein and daidzein, has spurred an intense activity aimed at elucidating its biological profile and its dietary relevance connected with the consumption of beer. We have investigated if 8PN can induce signal transduction pathways via rapid estrogen receptor (ER) activation. Under conditions of estrogen-dependent growth, treatment of MCF-7 human breast cancer cells with 8PN induced a rapid and transient activation of the MAP kinase Erk-1 and Erk-2, with kinetics similar to those induced by 17beta-estradiol (E2). 8PN could trigger the MAP kinase pathway via dual c-Src kinase activation and association with ERalpha. Co-treatment with the ER antagonist ICI 182,780 blocked each step of this transduction pathway, confirming its ER dependence. However, and in striking contrast with E2, 8PN could not induce the PI3K/Akt pathway, resulting in altered kinetics and levels of cyclin D1 expression. In accordance with these observations, flow cytometric and biochemical analysis showed that 8PN inhibited cell cycle progression and induced apoptosis in MCF-7 cells. Interference with an ER associated PI3K pathway is proposed as a possible mechanism underlying the inhibition of survival and proliferation of estrogen responsive cells by 8PN. Taken together, our finding show that 8PN is an interesting new chemotype to explore the biology of ERs.  相似文献   

7.
Novel moxifloxacin-copper complexes were synthesized, characterized and screened for anti-proliferative and apoptosis-inducing activity against multiple human breast cancer cell lines (hormone-dependent MCF-7 and T47D as well as hormone-independent MDA-MB-231 and BT-20). The results indicated that the parent compound moxifloxacin (1) does not exert any inhibitory activity against breast cancer cell lines examined. On the other hand, the copper conjugate 2 and its nitrogen adducts 3-5 exerted growth inhibitory and apoptosis-inducing activity against breast cancer cell lines without any substantial effect on non-tumorigenic breast epithelial cells MCF-10A at equimolar concentration, suggesting a cancer cell-specific activity. BT-20 cells were more sensitive to compounds 2 and 3, while compounds 4 and 5 exerted significant anti-proliferative and apoptosis-inducing effects on T47D, MDA-MB-231 and BT-20 cell lines. Our results suggest that these novel compounds could be useful for the treatment of breast cancer in the future.  相似文献   

8.
9.
The interactions in vitro between [3H]estradiol and liver proteins from Xenopus laevis have been examined to determine if the binding reaction meets criteria of steroid-receptors which may function in the induction of vitellogenesis. Estrogenic hormones associated with proteins in serum and liver cytosol from Xenopus laevis. However, the interactions between soluble liver proteins and estrogens apparently do not result from serum contamination of liver as specific binding was distinguishable by ligand affinity and by differential mobility on polyacrylamide gels. Steroid ligands bound by liver proteins during incubation in vitro were examined by solubility and by thin-layer chromatography. Only a small percentage (13%) of the bound radioactive ligand was recovered as the original tritium-labeled steroid, 17β-estradiol. The major ligand was recovered as a water-soluble metabolite of estradiol which was identified tentatively as an estradiol-glucoside. To investigate whether the protein-bound estradiol metabolite(s) merely masks a small amount of authentic estradiol-receptor complexes or if the metabolite could be an intermediate in estrogen function, isolated liver nuclei were incubated with liver cytosol containing 3H-labeled steroid-protein complexes or with serum protein-bound [3H]estradiol. Nuclei preferentially accumulated 3H-labelea steroids from liver cytosol protein-steroid complexes relative to [3H]estradiol from serum proteins. However, analysis of the steroids recovered in the nuclei after incubation with liver cytosol revealed that both 17β-[3H]estradiol and the 3H-labeled water-soluble metabolite were retained in vitro by nuclei.  相似文献   

10.
Previously, we have shown that progestins both stimulate proliferation of the progesterone receptor (PR)-rich human breast cancer cell line T47D and protect from cell death, in charcoal-stripped serum-containing medium. To lessen the variability inherent in different preparations of serum, we decided to further characterize progestin inhibition of cell death using serum starvation to kill the cells, and find that progestins protect from serum-starvation-induced apoptosis in T47D cells. This effect exhibits specificity for progestins and is inhibited by the antiprogestin RU486. While progestin inhibits cell death in a dose–responsive manner at physiological concentrations, estradiol-17β surprisingly does not inhibit cell death at any concentration from 0.001 nM to 1 μM. Progestin inhibition of cell death also occurs in at least two other human breast cancer cell lines, one with an intermediate level of PR, MCF-7 cells, and, surprisingly, one with no detectable level of PR, MDA-MB-231 cells. Further, we have found progestin inhibition of cell death caused by the breast cancer chemotherapeutic agents doxorubicin and 5-fluorouracil. These data are consistent with the building body of evidence that progestins are not the benign hormones for breast cancer they have been so long thought to be, but may be harmful both for undiagnosed cases and those undergoing treatment.  相似文献   

11.
The aim of this work was to investigate the mechanism of action of ferrocifen (Fc-OH-TAM), the ferrocenyl analog of 4-hydroxy-tamoxifen (OH-TAM), which is the active metabolite of tamoxifen, the drug most widely prescribed for treatment of hormone-dependent breast cancers. Fc-OH-TAM showed an anti-proliferative effect on the six breast cancer cell lines tested, 3 ERα positive (MCF-7, T-47D, ZR-75-1) and 3 ERα negative (MDA-MB-231, SKBR-3, Hs578-T) whatever their ER (estrogen receptor) status. However, the mechanism of action of the ferrocenyl derivative appeared to differ depending on the status of the ERα. Analysis of cell cycle distribution revealed that Fc-OH-TAM first recruits cells in the S phase in both ERα positive and ERα negative cells. In the presence of ERα, Fc-OH-TAM allowed cell cycle progression, with a subsequent blockade in G0/G1, whereas in the absence of ERα, cells remained in the S phase. Significant production of ROS was observed only in the presence of Fc-OH-TAM in both ERα positive and negative breast cancer cell lines. Within our experimental conditions, this ROS production is associated with cell cycle arrest and senescence rather than apoptosis. In the presence of ERα, Fc-OH-TAM seems to mainly act in the same way as OH-TAM but also induces an additional cytotoxic effect not mediated by the receptor. Our data suggest that this cytotoxic effect of Fc-OH-TAM is expressed via a mechanism of action distinct from the non-genomic pathway observed with high doses of OH-Tamoxifen.  相似文献   

12.
The synthesis of a novel series of 17beta-estradiol-linked platinum(II) complexes is described. The new molecules are linked with an alkyl chain at position 16alpha of the steroid nucleus and bear a 16beta-hydroxymethyl side chain. They are made from estrone in five chemical steps with an overall yield exceeding 28%. The biological activity of these compounds was evaluated in vitro on estrogen dependent and independent (ER+ and ER-) human breast cancers. The derivatives incorporating a 2-(2'-aminoethyl)pyridine ligand displayed good activity against the cell lines particularly when the connecting arm is 10 carbon atoms long.  相似文献   

13.
High levels of Wilms' Tumor 1 (WT1) mRNA have been correlated with poor prognosis in breast cancer patients. However, the function of WT1 protein in breast cancer is not known. We observed that the levels of WT1 protein correlated with the proliferation of breast cancer cells. When the proliferation of breast cancer cells was stimulated by 17beta-estradiol, WT1 protein expression increased. But when the proliferation of breast cancer cells was inhibited by tamoxifen or all-trans retinoic acid (ATRA), WT1 protein expression decreased. We hypothesize that WT1 protein plays a role in regulating breast cancer cell proliferation. Using liposome-incorporated WT1 antisense oligodeoxynucleotides, we found that downregulation of WT1 protein expression led to breast cancer growth inhibition and reduced cyclin D1 protein levels. These results indicate that WT1 protein contributes to breast cancer progression by promoting breast cancer cell proliferation.  相似文献   

14.
The progression of cancer is associated with tumor's ability to outgrow the existing vasculature resulting in chronic hypoxic pressure, however the molecular mechanism of cancer cell response to chronic hypoxia is poorly understood. In this study we have analyzed the reorganization of estrogen receptor (ER) signaling in breast cancer cells under chronic hypoxia and examined the role of interrelations between ER and NF-kB signaling in cell adaptation to hypoxia. Using long-term culturing of MCF-7 breast cancer cells in hypoxia-mimetic conditions (cobalt chloride) we have established a hypoxia-tolerant subline characterized by HIF-1 hyperexpression that retained the tolerance to hypoxia even when the cells were returned to normoxic conditions.The hypoxia-tolerant cells were characterized by non-affected ER signaling, irreversible suppression of NF-kB activity, and increased sensitivity to cytokine-induced apoptosis. Estradiol treatment suppressed the NF-kB activity in both parent and hypoxia-tolerant MCF-7 cells. In contrast to MCF-7 cells, the exposure of estrogen-independent MCF-7/T2 subline to chronic hypoxia was not accompanied by noticeable changes in NF-kB activity or cell sensitivity to cytokines. Taken together, the results presented demonstrate the importance of interrelations between ER and NF-kB signaling in the response of estrogen-dependent breast cancer cells to chronic hypoxia.  相似文献   

15.
Breast cancer is the most incident and mortal cancer type in women, with an estimated 2 million new cases expected by 2020 worldwide, with 600,000 deaths. As not all breast cancer types respond to the anti-hormonal therapy, the development of new antineoplastic drugs is necessary. Lawsone (2-hydroxy-1,4-naphtoquinone) is a natural bioactive naphtoquinone displaying a range of activities, with dozens of derivatives described in the literature, including some glycosides possessing antitumor activity. Here, a series of glycosides of lawsone are reported for the first time and all compounds displayed good activity against the SKBR-3 cell line, with IC50 below 10 µM. The most promising derivative was the glycosyl triazole derived from peracetylated d-glucose (11), which showed better cytotoxicity against SKBR-3 (IC50 = 0.78 µM), being the most selective toward this tumoral cell (SI > 20). All compounds described in this work were more active than lawsone, indicating the importance of the carbohydrate and glycosyl triazole moiety for activity.  相似文献   

16.
It is well known that resveratrol (RSV) displayed cancer-preventing and anticancer properties but its clinical application is limited because of a low bioavailability and a rapid clearance from the circulation. Aim of this work was to synthesize pharmacologically active resveratrol analogs with an enhanced structural rigidity and bioavailability. In particular, we have synthesized a library of 2,3-thiazolidin-4-one derivatives in which a thiazolidinone nucleus connects two aromatic rings. Some of these compounds showed strong inhibitory effects on breast cancer cell growth. Our results indicate that some of thiazolidin-based resveratrol derivatives may become a new potent alternative tool for the treatment of human breast cancer.  相似文献   

17.
18.
Dressing GE  Thomas P 《Steroids》2007,72(2):111-116
Novel membrane progestin receptors (mPRs) coupled to G proteins recently identified in several species, including humans, are potential intermediaries in rapid, nongenomic progestin actions observed in a wide variety of tissues. Here we demonstrate mPR mRNA and protein expression and specific membrane-associated progestin binding in MCF-7 and SK-BR-3 human breast cancer cells. Interestingly, human mPRalpha mRNA expression was higher in breast tumor biopsies than in normal tissue from the same breast. Recent studies indicate intracellular signaling pathways initiated by the mPRs are broadly similar to those induced during breast cancer growth and development. Taken together these results suggest a potential involvement of mPRs during the development or progression of breast cancer.  相似文献   

19.
Breast cancer is the second most common cancer worldwide after lung cancer with the vast majority of early stage breast cancers being hormone-dependent. One of the major therapeutic advances in the clinical treatment of breast cancer has been the introduction of selective estrogen receptor modulators (SERMs). We describe the design and synthesis of novel SERM type ligands based on the 2-arylindole scaffold to selectively target the estrogen receptor in hormone dependent breast cancers. Some of these novel compounds are designed as bisindole type structures, while others are conjugated to a cytotoxic agent based on combretastatin A4 (CA4) which is a potent inhibitor of tubulin polymerisation. The indole compounds synthesised within this project such as 31 and 86 demonstrate estrogen receptor (ER) binding and strong antiproliferative activity in the ER positive MCF-7 breast cancer cell line with IC50 values of 2.71 μM and 1.86 μM respectively. These active compounds induce apoptotic activity in MCF-7 cells with minimal effects on normal peripheral blood cells. Their strong anti-cancer effect is likely mediated by the presence of two ER binding ligands for 31 and an ER binding ligand combined with a cytotoxic agent for 86.  相似文献   

20.
This study addresses the correlation between the levels of estradiol (E2), total lipids, triglycerides, and cholesterol in serum and tissue samples of age-matched patients with benign (40 cases; 16 were premenopausal and 24 were postmenopausal) and malignant (50 cases; 17 were premenopausal and 33 were postmenopausal) breast tumors. Estradiol levels were determined in serum and cytosol, estrogen receptors (ER) were assayed in cytosol, and total lipids, triglycerides and cholesterol were determined in serum and membrane fractions of all benign and malignant breast disease patients. Serum E2 was significantly higher in malignant cases than benign ones (P<0.05) with a significant reduction (40%) in postmenopausal than premenopausal women. ER-positive tumors were significantly higher in postmenopausal women with malignant breast tumors than benign cases (P<0.05). Tissue levels of total lipids, triglycerides, and cholesterol were highly significantly increased in breast cancer women than women with benign breast diseases (P<0.05, P<0.005 and P<0.05 respectively) and they were also significantly correlated with estradiol levels. It could be concluded that the uptake of lipids from plasma by the tumor tissue is greatly correlated to estradiol and it may confirm the possible role of lipids as risk factor in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号