首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate-mediated excitotoxicity has been considered to play an important role in the mechanism of spinal motoneuron death in amyotrophic lateral sclerosis (ALS), and some reports suggest that this excitotoxicity may be due to a decreased glutamate transport and the consequent elevation of its extracellular level. We have previously shown that short lasting increments in extracellular glutamate due to administration of the non-selective glutamate transport blocker l-2,4-trans-pyrrolidine-dicarboxylate (PDC) by microdialysis in the rat spinal cord do not induce motoneuron damage. In the present work we examined the potential involvement of chronic glutamate transport blockade as a causative factor of spinal motoneuron death and paralysis in vivo. Using osmotic minipumps, we infused directly in the spinal cord for up to 10 days PDC and another glutamate transport blocker, dl-threo-β-benzyloxyaspartate (TBOA), and we measured by means of microdialysis and HPLC the extracellular concentration of glutamate and other amino acids. We found that after the infusion of both PDC and TBOA the concentration of endogenous extracellular glutamate was 3–4-fold higher than that of the controls. Nevertheless, in spite of this elevation no motoneuron degeneration or gliosis were observed, assessed by histological examination and choline acetyltransferase and glial fibrillary acidic protein immunocytochemistry. In accord with this lack of toxic effect, no motor deficits, assessed by three motor activity tests, were observed.Because we had previously shown that under identical experimental conditions the infusion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) induced progressive motoneuron death and paralysis, we conclude that prolonged elevation of extracellular glutamate due to its transport blockade in vivo is innocuous for spinal motoneurons and therefore that these results do not support the hypothesis that glutamate transport deficiency plays a crucial role as a causal factor of spinal motoneuron degeneration in ALS.  相似文献   

2.
MN (motor neuron) death in amyotrophic lateral sclerosis may be mediated by glutamatergic excitotoxicity. Previously, our group showed that the microdialysis perfusion of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) in the rat lumbar spinal cord induced MN death and permanent paralysis within 12 h after the experiment. Here, we studied the involvement of energy metabolic deficiencies and of oxidative stress in this MN degeneration, by testing the neuroprotective effect of various energy metabolic substrates and antioxidants. Pyruvate, lactate, β-hydroxybutyrate, α-ketobutyrate and creatine reduced MN loss by 50–65%, preserved motor function and completely prevented the paralysis. Ascorbate, glutathione and glutathione ethyl ester weakly protected against motor deficits and reduced MN death by only 30–40%. Reactive oxygen species formation and 3-nitrotyrosine immunoreactivity were studied 1.5–2 h after AMPA perfusion, during the initial MN degenerating process, and no changes were observed. We conclude that mitochondrial energy deficiency plays a crucial role in this excitotoxic spinal MN degeneration, whereas oxidative stress seems a less relevant mechanism. Interestingly, we observed a clear correlation between the alterations of motor function and the number of damaged MNs, suggesting that there is a threshold of about 50% in the number of healthy MNs necessary to preserve motor function.  相似文献   

3.
Application of the glutamate agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA, 5-10 microM), or N-methyl-D-aspartate (NMDA, 50-100 microM) to the turtle spinal cord produced fictive hindlimb motor patterns in low-spinal immobilized animals (in vivo) and in isolated spinal cord-hindlimb nerve preparations (in vitro). For in vivo experiments, drugs were applied onto the dorsal surface of 2-4 adjacent spinal cord segments in and near the anterior hindlimb enlargement. Motor output was recorded unilaterally or bilaterally from hindlimb muscle nerves. AMPA elicited vigorous motor patterns in vivo that included strict hip flexor-extensor and right-left alternation. In most turtles, the monoarticular knee extensor nerve FT-KE was active during the HE phase of AMPA evoked burst cycles, similar to the timing of pocket scratch motor patterns. NMDA was less effective in vivo, typically producing only weak and irregular bursting from hip nerves and little or no knee extensor (KE) discharge. Sensory stimulation of a rostral scratch reflex in vivo could reset an ongoing AMPA-evoked motor rhythm, indicating that cutaneous reflex pathways interact centrally with the chemically activated rhythm generator. Most in vitro preparations consisted of six segments of spinal cord, including the entire 5-segment hindlimb enlargement (D8-S2) and the segment immediately anterior to the enlargement (D7), with attached hindlimb nerves. In contrast to in vivo experiments, in vitro preparations exhibited highly regular, long-lasting motor rhythms when NMDA was superfused over the spinal cord. AMPA also produced rhythmic motor patterns in vitro, but these lasted only a few minutes before they were replaced with tonic discharge. FT-KE timing during in vitro chemically elicited activity was similar to that of sensory-evoked pocket scratch motor patterns. Some NMDA-evoked rhythmicity persisted even in 3-segment (D6-D8) and 1-segment (D8) in vitro preparations, demonstrating that neural mechanisms for chemically activated rhythmogenesis reside even in a single segment of the hindlimb enlargement.  相似文献   

4.
5.
Non-cell autonomous pathology is widely accepted to determine the demise of motoneurons (MNs) in amyotrophic lateral sclerosis (ALS) with astrocytes, GFAP and glutamate transport suggested to play roles in reactive astrogliosis. Previously we described actions of excitotoxicity and oxidative stress to produce differential injury of motoneurons and astrocytes, respectively, and our goal here was to define patterns of MN injury and astrogliosis during a combined excitotoxic-oxidative injury since such a paradigm more closely models disease pathology. Using an in vitro neuronal-glial culture of embryonic mouse spinal cord, we demonstrate that glutamate transport activity was maintained or increased initially, despite a loss of cellular viability, induced by exposure to combinations of excitotoxic [(S)-5-fluorowillardiine (FW)] and oxidative [3-morpholinosydnonimine (SIN-1)] insults over 48h. Under these conditions, injury was slow in time course and apoptotic-like as shown by the patterns of annexin V and propidium iodide (PI) labelling. Immunocytochemistry for SMI-32 revealed that injury produced time- and insult-dependent reductions in the size of MN arbours, axonal dieback and appreciable neuritic blebbing. These changes were preceded by early hypertrophy of GFAP-positive astrocytes, and followed by more delayed stellation and eventual gliotoxicity. Alterations to EAAT2 immunolabelling were similar to those found for GFAP being initially maintained and then eventually reduced at 48h. Image analysis of immunocytochemical data confirmed the differential time-dependent changes found with SMI-32, GFAP and EAAT2. Axonopathy and blebbing of MNs was frequently associated with areas of low GFAP immunoreactivity. The exact profile of changes to MNs and astrocytes was context-dependent and sensitive to subtle changes in the mix of excitotoxic-oxidative insults. Overall our findings are consistent with the concepts that the nature, extent and time-course of astrogliosis are insult-dependent, and that discrete pro-survival and destructive components of astrogliosis are likely to determine the precise profile of MN injury in non-cell autonomous pathology of ALS.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease pathologically characterized by the massive loss of motor neurons in the spinal cord, brain stem and cerebral cortex. There is a consensus in the field that ALS is a multifactorial pathology and a number of possible mechanisms have been suggested. Among the proposed hypothesis, glutamate toxicity has been one of the most investigated. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor mediated cell death and impairment of the glutamate-transport system have been suggested to play a central role in the glutamate-mediated motor neuron degeneration. In this context, the role played by the N-methyl-d-aspartate (NMDA) receptor has received considerable less attention notwithstanding its high Ca2 + permeability, expression in motor neurons and its importance in excitotoxicity. This review overviews the critical role of NMDA-mediated toxicity in ALS, with a particular emphasis on the endogenous modulators of the NMDAR.  相似文献   

7.
Excitatory transmission in the brain is commonly mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In amyotrophic lateral sclerosis (ALS), AMPA receptors allow cytotoxic levels of calcium into neurons, contributing to motor neuron injury. We have previously shown that oculomotor neurons resistant to the disease process in ALS show reduced AMPA-mediated inward calcium currents compared with vulnerable spinal motor neurons. We have also shown that PTEN (phosphatase and tensin homolog deleted on chromosome 10) knockdown via siRNA promotes motor neuron survival in models of spinal muscular atrophy (SMA) and ALS. It has been reported that inhibition of PTEN attenuates the death of hippocampal neurons post injury by decreasing the effective translocation of the GluR2 subunit into the membrane. In addition, leptin can regulate AMPA receptor trafficking via PTEN inhibition. Thus, we speculate that manipulation of AMPA receptors by PTEN may represent a potential therapeutic strategy for neuroprotective intervention in ALS and other neurodegenerative disorders. To this end, the first step is to establish a fibroblast–iPS–motor neuron in vitro cell model to study AMPA receptor manipulation. Here we report that iPS-derived motor neurons from human fibroblasts express AMPA receptors. PTEN depletion decreases AMPA receptor expression and AMPA-mediated whole-cell currents, resulting in inhibition of AMPA-induced neuronal death in primary cultured and iPS-derived motor neurons. Taken together, our results imply that PTEN depletion may protect motor neurons by inhibition of excitatory transmission that represents a therapeutic strategy of potential benefit for the amelioration of excitotoxicity in ALS and other neurodegenerative disorders.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a fatal non‐cell‐autonomous neurodegenerative disease characterized by the loss of motor neurons (MNs). Mutations in CRMP4 are associated with ALS in patients, and elevated levels of CRMP4 are suggested to affect MN health in the SOD1G93A‐ALS mouse model. However, the mechanism by which CRMP4 mediates toxicity in ALS MNs is poorly understood. Here, by using tissue from human patients with sporadic ALS, MNs derived from C9orf72‐mutant patients, and the SOD1G93A‐ALS mouse model, we demonstrate that subcellular changes in CRMP4 levels promote MN loss in ALS. First, we show that while expression of CRMP4 protein is increased in cell bodies of ALS‐affected MN, CRMP4 levels are decreased in the distal axons. Cellular mislocalization of CRMP4 is caused by increased interaction with the retrograde motor protein, dynein, which mediates CRMP4 transport from distal axons to the soma and thereby promotes MN loss. Blocking the CRMP4‐dynein interaction reduces MN loss in human‐derived MNs (C9orf72) and in ALS model mice. Thus, we demonstrate a novel CRMP4‐dependent retrograde death signal that underlies MN loss in ALS.  相似文献   

9.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

10.
Excitotoxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors has been proposed to play a major role in the selective death of motor neurons in sporadic amyotrophic lateral sclerosis (ALS), and motor neurons are more vulnerable to AMPA receptor-mediated excitotoxicity than are other neuronal subclasses. On the basis of the above evidence, we aimed to develop a rat model of ALS by the long-term activation of AMPA receptors through continuous infusion of kainic acid (KA), an AMPA receptor agonist, into the spinal subarachnoid space. These rats displayed a progressive motor-selective behavioral deficit with delayed loss of spinal motor neurons, mimicking the clinicopathological characteristics of ALS. These changes were significantly ameliorated by co-infusion with 6-nitro-7-sulfamobenso(f)quinoxaline-2,3-dione (NBQX), but not with d(-)-2-amino-5-phosphonovaleric acid (APV), and were exacerbated by co-infusion with cyclothiazide, indicative of an AMPA receptor-mediated mechanism. Among the four AMPA receptor subunits, expression of GluR3 mRNA was selectively up-regulated in motor neurons but not in dorsal horn neurons of the KA-infused rats. The up-regulation of GluR3 mRNA in this model may cause a molecular change that induces the selective vulnerability of motor neurons to KA by increasing the proportion of GluR2-lacking (i.e. calcium-permeable) AMPA receptors. This rat model may be useful in investigating ALS etiology.  相似文献   

11.
Del Arco A  Segovia G  Mora F 《Amino acids》2000,19(3-4):729-738
Summary. Using microdialysis, the effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat were investigated. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was used to increase the extracellular concentration of glutamate. PDC (1, 2 and 4 mM) produced a dose-related increase of extracellular concentrations of glutamate and taurine in striatum and nucleus accumbens. Increases of extracellular taurine were significantly correlated with increases of extracellular glutamate, but not with PDC doses, which suggests that endogenous glutamate produced the observed increases of extracellular taurine in striatum and nucleus accumbens. The role of ionotropic glutamate receptors on the increases of taurine was also studied. In striatum, perfusion of the antagonists of NMDA and AMPA/kainate glutamate receptors attenuated the increases of extracellular taurine. AMPA/kainate, but not NMDA receptors, also reduced the increases of extracellular taurine in nucleus accumbens. These results suggest that glutamate-taurine interactions exist in striatum and nucleus accumbens of the awake rat. Received March 5, 1999/Accepted September 22, 1999  相似文献   

12.
Unfortunately and despite all efforts, amyotrophic lateral sclerosis (ALS) remains an incurable neurodegenerative disorder characterized by the progressive and selective death of motor neurons. The cause of this process is mostly unknown, but evidence is available that excitotoxicity plays an important role. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS. The most important one is that the only drug proven to slow the disease process in humans, riluzole, has anti-excitotoxic properties. Moreover, consumption of excitotoxins can give rise to selective motor neuron death, indicating that motor neurons are extremely sensitive to excessive stimulation of glutamate receptors. We will summarize the intrinsic properties of motor neurons that could render these cells particularly sensitive to excitotoxicity. Most of these characteristics relate to the way motor neurons handle Ca(2+), as they combine two exceptional characteristics: a low Ca(2+)-buffering capacity and a high number of Ca(2+)-permeable AMPA receptors. These properties most likely are essential to perform their normal function, but under pathological conditions they could become responsible for the selective death of motor neurons. In order to achieve this worst-case scenario, additional factors/mechanisms could be required. In 1 to 2% of the ALS patients, mutations in the SOD1 gene could shift the balance from normal motor neuron excitation to excitotoxicity by decreasing glutamate uptake in the surrounding astrocytes and/or by interfering with mitochondrial function. We will discuss point by point these different pathogenic mechanisms that could give rise to classical and/or slow excitotoxicity leading to selective motor neuron death.  相似文献   

13.
Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1β release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1β and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1β-deficient animals. Together, these data show that IL-1β inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date.  相似文献   

14.
Focal degeneration of astrocytes in amyotrophic lateral sclerosis   总被引:1,自引:0,他引:1  
Astrocytes emerge as key players in motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS). Whether astrocytes cause direct damage by releasing toxic factors or contribute indirectly through the loss of physiological functions is unclear. Here we identify in the hSOD1(G93A) transgenic mouse model of ALS a degenerative process of the astrocytes, restricted to those directly surrounding spinal motor neurons. This phenomenon manifests with an early onset and becomes significant concomitant with the loss of motor cells and the appearance of clinical symptoms. Contrary to wild-type astrocytes, mutant hSOD1-expressing astrocytes are highly vulnerable to glutamate and undergo cell death mediated by the metabotropic type-5 receptor (mGluR5). Blocking mGluR5 in vivo slows down astrocytic degeneration, delays the onset of the disease and slightly extends survival in hSOD1(G93A) transgenic mice. We propose that excitotoxicity in ALS affects both motor neurons and astrocytes, favouring their local interactive degeneration. This new mechanistic hypothesis has implications for therapeutic interventions.  相似文献   

15.
Using microdialysis, interactions between endogenous glutamate, dopamine, and GABA were investigated in the medial prefrontal cortex of the freely moving rat. Interactions between glutamate and other neurotransmitters in the prefrontal cortex had already been studied using pharmacological agonists or antagonists of glutamate receptors. This research investigated whether glutamate itself, through the increase of its endogenous extracellular concentration, is able to modulate the extracellular concentrations of GABA and dopamine in the prefrontal cortex. Intracortical infusions of the selective glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) were used to increase the endogenous extracellular glutamate. PDC (0.5, 2, 8, 16 and 32 mM) produced a dose-related increase in dialysate glutamate in a range of 1–36 M. At the dose of 16 mM, PDC increased dialysate glutamate from 1.25 to 28 M. PDC also increased extracellular GABA and taurine, but not dopamine; and decreased extracellular concentrations of the dopamine metabolites DOPAC and HVA. NMDA and AMPA/KA receptor antagonists were used to investigate whether the increases of extracellular glutamate were responsible for the changes in the release of GABA, and dopamine metabolites. The NMDA antagonist had no effect on the increase of extracellular GABA, but blocked the decreases of extracellular DOPAC and HVA, produced by PDC. In contrast, the AMPA/KA antagonist blocked the increases of extracellular GABA without affecting the decreases of extracellular DOPAC and HVA produced by PDC. These results suggest that endogenous glutamate acts preferentially through NMDA receptors to decrease dopamine metabolism, and through AMPA/KA receptors to increase GABAergic activity in the medial prefrontal cortex of the awake rat.  相似文献   

16.
Microdialysis perfusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in rat lumbar spinal cord produces severe motoneuron damage and consequently hindlimb paralysis. Here we studied the time course of the AMPA-induced neurodegenerative changes and motor alterations, and the protective effect of leupeptin, an inhibitor of calpain, a Ca(2+)-activated protease. Paralysis occurs at 4-6 h after AMPA perfusion, but cresyl violet staining showed that motoneuron damage starts at about 3 h and progresses until reaching 50% neuronal loss at 6 h and 90% loss at 12 h. In contrast, choline acetyltransferase (ChAT) immunohistochemistry revealed that the enzyme is already decreased at 30 min after AMPA perfusion and practically disappears at 3 h. Microdialysis coperfusion of leupeptin with AMPA prevented the motor alterations and paralysis and remarkably reduced both the decrement in ChAT immunoreactivity and the loss of motoneurons. We conclude that an increased Ca(2+) influx through Ca(2+)-permeable AMPA receptors activates calpain, and as a consequence ChAT content decreases earlier than other Ca(2+)-dependent processes, including the proteolytic activity of calpain, cause the death of motoneurons.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurons (MN) in the motor cortex, brain stem, and spinal cord. In the present study, we established an ALS in vitro model of purified embryonic MNs, derived from non-transgenic and mutant SOD1-G93A transgenic mice, the most commonly used ALS animal model. MNs were cultured together with either non-transgenic or mutant SOD1-G93A astrocyte feeder layers. Cell viability following exposure to kainate as excitotoxic stimulus was assessed by immunocytochemistry and calcium imaging. We then examined the neuroprotective effects of N-acetyl-GLP-1(7-34) amide (N-ac-GLP-1), a long-acting, N-terminally acetylated, C-terminally truncated analog of glucagon-like peptide-1 (GLP-1). GLP-1 has initially been studied as a treatment for type II diabetes based on its function as insulin secretagogue. We detected neuroprotective effects of N-ac-GLP-1 in our in vitro system, which could be attributed to an attenuation of intracellular calcium transients, not only due to these antiexcitotoxic capacities but also with respect to the increasing knowledge about metabolic deficits in ALS which could be positively influenced by N-ac-GLP-1, this compound represents an interesting novel candidate for further in vivo evaluation in ALS.  相似文献   

18.
The etiology of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains to be better understood. Based on the studies from ALS patients and transgenic animal models, it is believed that ALS is likely to be a multifactorial and multisystem disease. Many mechanisms have been postulated to be involved in the pathology of ALS, such as oxidative stress, glutamate excitotoxicity, mitochondrial damage, defective axonal transport, glia cell pathology and aberrant RNA metabolism. Mitochondria, which play crucial roles in excitotoxicity, apoptosis and cell survival, have shown to be an early target in ALS pathogenesis and contribute to the disease progression. Morphological and functional defects in mitochondria were found in both human patients and ALS mice overexpressing mutant SOD1. Mutant SOD1 was found to be preferentially associated with mitochondria and subsequently impair mitochondrial function. Recent studies suggest that axonal transport of mitochondria along microtubules and mitochondrial dynamics may also be disrupted in ALS. These results also illustrate the critical importance of maintaining proper mitochondrial function in axons and neuromuscular junctions, supporting the emerging “dying-back” axonopathy model of ALS. In this review, we will discuss how mitochondrial dysfunction has been linked to the ALS variants of SOD1 and the mechanisms by which mitochondrial damage contributes to the disease etiology.  相似文献   

19.
Triple stimulation technique (TST) has previously shown that transcranial magnetic stimulation (TMS) fails to activate a proportion of spinal motoneurons (MNs) during motor fatigue. The depression in size of the TST response, but no attenuation of the conventional motor-evoked potential, suggested increased probability of repetitive spinal MN activation during exercise, even if some MNs failed to discharge by the brain stimulus. Here we used a modified TST [quadruple stimulation (QuadS) and quintuple stimulation (QuintS)] to examine the influence of fatiguing exercise on second and third MN discharges after a single TMS in healthy subjects. This method allows an estimation of the percentage of double and triple discharging MNs. Following a sustained contraction of the abductor digiti minimi muscle at 50% maximal force maintained to exhaustion, the size of QuadS and QuintS responses increased markedly, reflecting that a greater proportion of spinal MNs was activated two or three times by the transcranial stimulus. The size of QuadS responses did not return to precontraction levels during 10-min observation time, indicating long-lasting increase in excitatory input to spinal MNs. In addition, the postexercise behavior of QuadS responses was related to the duration of the contraction, pointing to a correlation between repeated activation of MNs and the subject's ability to maintain force. In conclusion, the study confirmed that an increased fraction of spinal MNs fire more than once in response to TMS when the muscle is fatigued. Repetitive MN firing may provide an adaptive mechanism to maintain motor unit activation and task performance during sustained voluntary activity.  相似文献   

20.
Motor neurons (MNs) are highly energetic cells and recent studies suggest that altered energy metabolism precede MN loss in amyotrophic lateral sclerosis (ALS), an age-onset neurodegenerative disease. However, clear mechanistic insights linking altered metabolism and MN death are still missing. In this study, induced pluripotent stem cells from healthy controls, familial ALS, and sporadic ALS patients were differentiated toward spinal MNs, cortical neurons, and cardiomyocytes. Metabolic flux analyses reveal an MN-specific deficiency in mitochondrial respiration in ALS. Intriguingly, all forms of familial and sporadic ALS MNs tested in our study exhibited similar defective metabolic profiles, which were attributed to hyper-acetylation of mitochondrial proteins. In the mitochondria, Sirtuin-3 (SIRT3) functions as a mitochondrial deacetylase to maintain mitochondrial function and integrity. We found that activating SIRT3 using nicotinamide or a small molecule activator reversed the defective metabolic profiles in all our ALS MNs, as well as correct a constellation of ALS-associated phenotypes.Subject terms: Neuroscience, Pathogenesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号