首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Tsujita  J M Smaby  H L Brockman 《Biochemistry》1987,26(25):8430-8434
The physical specificity of adsorption of porcine pancreatic carboxylester lipase to mixed-lipid surfaces was examined by using films at the argon-buffer interface. They were comprised of 1-palmitoyl-2-oleoylphosphatidylcholine and triolein, 1,3-diolein, methyl oleate, oleonitrile, oleyl alcohol, or 13,16-docosadienoic acid. Under conditions where the surfaces are thermodynamically well-defined, each of these binary systems exhibits the formation of a lipid-lipid complex that is completely miscible with uncomplexed non-phospholipid [Smaby, J. M., & Brockman, H. L. (1985) Biophys. J. 48, 701-707]. Initial rates of adsorption of enzyme to the complexes were less than or equal to 5% of those measured in the absence of phospholipid and comparable to its rate of adsorption to phospholipid alone. This occurred despite there being up to 46% of the surface area occupied by non-phospholipid in the complexes. Equilibrium binding measurements were made at a composition where phospholipid-fatty acid complex was the predominant species. These showed that the low rates were due to an absence of adsorption sites relative to surfaces of fatty acid alone. With diolein or fatty acid and phospholipid, equilibrium binding was also measured at compositions intermediate between that of the complex and pure non-phospholipid. In both systems surface concentrations of enzyme varied nonideally with respect to either the mole fraction or area fraction of complex and uncomplexed diolein or fatty acid in the film. At area fractions of uncomplexed lipid of 0.35 and 0.67, dissociation constants for enzyme adsorption were increased 10-20-fold relative to pure fatty acid or diolein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pig pancreatic carboxylester lipase (cholesterol esterase, E.C. 3.1.1.13) was inactivated at a tributyrin/water interface. The apparent rate constant for inactivation increased with increase in the particle surface area of the tributyrin emulsion. The large energy of activation and entropy change for inactivation (33.7 Kcal.mol-1 and 35.8 cal.mol-1.deg-1, using 5 mM sonicated tributyrin at 37 degrees C, respectively) suggest that the observed inactivation reflects denaturation of the enzyme at the tributyrin/water interface. Bile salts protected the enzyme from irreversible inactivation at the tributyrin/water interface. The protection by bile salts was related both to their concentration and to the tributyrin concentration (substrate surface area). The protection by bile salts was not related to their concentration below or above their critical micellar concentration; the binding of bile salts to enzyme was probably the dominant protection factor. Similar stabilization was observed with other detergents such as Brij-35, Triton X-100, and sodium dodecyl sulfate. These results suggest that inactivation of carboxylester lipase occurs at a high-energy lipid-water interface and that an important role of bile salts in vivo is to stabilize carboxylester lipase at interfaces.  相似文献   

3.
T Tsujita  H L Brockman 《Biochemistry》1987,26(25):8423-8429
The chemical specificity of the adsorption of porcine pancreatic carboxyl ester lipase to pure lipid surfaces was examined. Adsorption of native and catalytically inactivated enzyme was measured at the argon-buffer interface by using lipid films near the point of collapse. Protein adsorbed readily to films of triolein, 1,3-diolein, methyl oleate, oleonitrile, oleyl alcohol, and 13,16-docosadienoic acid. However, recovery of enzyme activity was variable. These differences and the changes in surface pressure accompanying adsorption indicated the occurrence of enzyme denaturation at the interface. Denaturation was controlled largely by surface free energy but showed some chemical specificity at high surface pressures. Adsorption of protein to the lipids was comparable when measured under either equilibrium or initial rate conditions. Together with surface pressure changes that accompany adsorption, the data indicate a relative lack of specificity for the enzyme-surface interaction. Adsorption to 13,16-docosadienoic acid and 1,3-diolein obeyed the Langmuir adsorption isotherm. Dissociation constants ranged from 10 to 50 nM, depending on enzyme form, ionic strength, and pH. With both lipids, a monolayer of enzyme was adsorbed at saturation. In contrast to these results, adsorption of enzyme activity and protein to films of 1-palmitoyl-2-oleoyl-phosphatidylcholine was less than or equal to 5% of that observed with the other lipids under all conditions. Comparison of rate constants for adsorption to 13,16-docosadienoic and 1,3-diolein as a function of subphase pH indicated a marked dependence on the ionization state of the fatty acid. Overall, the data suggest that the presence of zwitterionic and anionic lipids may regulate the interaction of the enzyme with substrate-containing surfaces in vivo.  相似文献   

4.
There is considerable interest in lateral domain structure in biological membranes not least because a variety of physiological processes are believed to require assembly and mutual organization of particular membrane components for their execution. Domain structure is known to be created by differences in physicochemical properties between membrane lipids such as phase transition temperature, intermolecular hydrogen bonding and ionic functional groups. Domains are also created by specific interactions between different membrane lipids to form stoichiometric complexes. Such complexes often form ordered structures referred to as membrane rafts. The present challenge is to define the balance of line tension between lateral membrane domains in individual leaflets of the bilayer and coupling forces operating at the midplane of the bilayer responsible for maintaining lipids in opposing domains on either side of the structure in register. A review of the current evidence relating to these questions is presented.  相似文献   

5.
Carboxylester lipase (cholesterol esterase, EC 3.1.1.13) has been purified to homogeneity from porcine pancreas. The enzyme is isolated in two molecular mass forms, a monomer of 74 kDa and a dimer of 167 kDa. The dimer consists of two catalytically-active subunits which have molecular masses approximately 9 kDa greater than the monomers. The difference in size was not attributable to carbohydrate or lipid content. The catalytic properties of the two forms are comparable on a weight basis, the amino acid compositions are quite similar, and the N-terminal sequences are nearly identical for 24 residues. These similarities suggest a possible precursor-product relationship between the two carboxylester lipase forms.  相似文献   

6.
Extralysosomal proteolysis by multicatalytic complexes such as the 26S proteasome produces large amounts of peptides in the cytosol, mitochondria and nuclei of eukaryotic cells, and there is increasing evidence that the resulting free intracellular peptides can modulate specific protein interactions. The demonstration that free peptides added to the intracellular milieu can regulate cellular functions mediated by protein interactions suggests new putative roles for these molecules in gene regulation, metabolism, cell signaling and protein targeting. Such interactions frequently involve specific consensus amino acid sequences that can be predicted based on similarities in domain composition. We have recently developed a new strategy for identifying novel natural peptides, the sequences of which correspond to fragments of intracellular proteins and contain putative post-translational modification sites. In this review, we examine the evidence that intracellular peptides released by proteasomes may be involved in regulating protein interactions. In particular, the role of endopeptidase 24.15 (thimet oligopeptidase; EC 3.4.24.15) is discussed in detail as this enzyme has been implicated in intracellular peptide metabolism in vivo in concert with the 26S proteasome.  相似文献   

7.
8.
An interaction between lactoferrin and human pancreatic carboxylester hydrolase (carboxylic-ester hydrolase, EC 3.1.1.1) (of bile-salt-stimulated lipase from human milk) has been demonstrated using partition in an aqueous two-phase system. This binding was strongly increased by the presence of sodium taurocholate, giving an apparent dissociation constant of around 10(-7) M. With this constant, significant binding is expected to occur in the intestine of the newborn being breast-fed between lactoferrin and either the pancreatic carboxylester hydrolase or the milk bile-salt-stimulated lipase. For carboxylester hydrolase, the interaction with lactoferrin meant a 1.4-fold increase in hydrolytic activity against p-nitrophenylacetate and cholesterololeate. For the function of lactoferrin we have not studied the importance of this interaction.  相似文献   

9.
The ESR spectra of six different positional isomers of a stearic acid and three of a phosphatidylcholine spin label have been studied as a function of temperature in chromaffin granule membranes from the bovine adrenal medulla, and in bilayers formed by aqueous dispersion of the extracted membrane lipids. Only minor differences were found between the spectra of the membranes and the extracted lipid, indicating that the major portion of the membrane lipid is organized in a bilayer arrangement which is relatively unperturbed by the presence of the membrane protein. The order parameter profile of the spin label lipid chain motion is less steep over the first half of the chain than over the section toward the terminal methyl end of the chain. This 'stiffening' effect is attributed to the high proportion of cholesterol in the membrane and becomes less marked as the temperature is raised. The isotropic hyperfine splitting factors of the various positional isomers display a profile of decreasing polarity as one penetrates further into the interior of the membrane. No marked differences are observed between the effective polarities in the intact membranes and in bilayers of the extracted membrane lipids. The previously observed temperature-induced structural change occurring in the membranes at approx. 35 degrees C was found also in the extracted lipid bilayers, showing this to be a result of lipid-lipid interactions and not lipid-protein interactions in the membrane. A steroid spin label indicated a second temperature-dependent structural change occurring in the lipid bilayers at lower temperatures. This correspond to the onset of a more rapid rotation about the long axis of the lipid molecules at a temperature of approx. 10 degrees C. The lipid bilayer regions probed by the spin labels used in this study may be involved in the fusion of the chromaffin granule membrane leading to hormone release by exocytosis.  相似文献   

10.
The ESR spectra of six different positional isomers of a stearic acid and three of a phosphatidylcholine spin label have been studied as a function of temperature in chromaffin granule membranes from the bovine adrenal medulla, and in bilayers formed by aqueous dispersion of the extracted membrane lipids. Only minor differences were found between the spectra of the membranes and the extracted lipid, indicating that the major portion of the membrane lipid is organized in a bilayer arrangement which is relatively unperturbed by the presence of the membrane protein. The order parameter profile of the spin label lipid chain motion is less steep over the first half of the chain than over the section toward the terminal methyl end of the chain. This ‘stiffening’ effect is attributed to the high proportion of cholesterol in the membrane and becomes less marked as the temperature is raised. The isotropic hyperfine splitting factors of the various positional isomers display a profile of decreasing polarity as one penetrates further into the interior of the membrane. No marked differences are observed between the effective polarities in the intact membranes and in bilayers of the extracted membrane lipids. The previously observed temperature-induced structural change occurring in the membranes at approx. 35°C was found also in the extracted lipid bilayers, showing this to be a result of lipid-lipid interactions and not lipid-protein interactions in the membrane. A steroid spin label indicated a second temperature-dependent structural change occurring in the lipid bilayers at lower temperatures. This corresponds to the onset of a more rapid rotation about the long axis of the lipid molecules at a temperature of approx. 10°C. The lipid bilayer regions probed by the spin labels used in this study may be involved in the fusion of the chromaffin granule membrane leading to hormone release by exocytosis.  相似文献   

11.
12.
Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins.  相似文献   

13.
14.
15.
Liberibacter asiaticus is the prevalent causative pathogen of Huanglongbing or citrus greening disease, which has resulted in a devastating crisis in the citrus industry. A thorough understanding of this pathogen's physiology and mechanisms to control cell survival is critical in the identification of therapeutic targets. YbeY is a highly conserved bacterial RNase that has been implicated in multiple roles. In this study, we evaluated the biochemical characteristics of the L. asiaticus YbeY (CLIBASIA_01560) and assessed its potential as a target for antimicrobials. YbeYLas was characterized as an endoribonuclease with activity on 3′ and 5′ termini of 16S and 23S rRNAs, and the capacity to suppress the E. coli ΔybeY phenotype. We predicted the YbeYLas protein:ligand interface and subsequently identified a flavone compound, luteolin, as a selective inhibitor. Site-directed mutagenesis was subsequently used to identify key residues involved in the catalytic activity of YbeYLas. Further evaluation of naturally occurring flavonoids in citrus trees indicated that both flavones and flavonols had potent inhibitory effects on YbeYLas. Luteolin was subsequently examined for efficacy against L. asiaticus in Huanglongbing-infected citrus trees, where a significant reduction in L. asiaticus gene expression was observed.  相似文献   

16.
The acidic proteins, A-proteins, from the large ribosomal subunit of Saccharomyces cerevisiae grown under different conditions have been quantitatively estimated by ELISA tests using rabbit sera specific for these polypeptides. It has been found that the amount of A-protein present in the ribosome is not constant and depends on the metabolic state of the cell. Ribosomes from exponentially growing cultures have about 40% more of these proteins than those from stationary phase. Similarly, the particles forming part of the polysomes are enriched in A-proteins as compared with the free 80 S ribosomes. The cytoplasmic pool of A-protein is considerably high, containing as a whole as much protein as the total ribosome population. These results are compatible with an exchanging process of the acidic proteins during protein synthesis that can regulate the activity of the ribosome. On the other hand, cells inhibited with different metabolic inhibitors produce a very low yield of ribosomes that contain, however, a surprisingly high amount of acidic proteins while the cytoplasmic pool is considerably reduced, suggesting that under stress conditions the ribosome and the A-protein may aggregate, forming complex structures that are not recovered by the standard preparation methods.  相似文献   

17.
Septins form a cortical scaffold at the yeast mother-bud neck that restricts the diffusion of cortical proteins between the mother and bud and serves as a signaling center that is important for governing various cell functions. After cell cycle commitment in late G(1), septins are assembled into a narrow ring at the future bud site, which spreads to form a mature septin hourglass immediately after bud emergence. Although several septin regulators have been identified, it is unclear how they cooperate to assemble the septin scaffold. We have examined septin localization in isogenic strains containing single or multiple mutations in eight septin organization genes (CDC42, RGA1, RGA2, BEM3, CLA4, GIN4, NAP1, and ELM1). Our results suggest that these regulators act largely in parallel to promote either the initial assembly of the septin ring (CDC42, RGA1, RGA2, BEM3, and CLA4) or the conversion of the ring to a stable hourglass structure at the neck (GIN4, NAP1, and ELM1). Aberrant septin localization patterns in mutant strains could be divided into apparently discrete categories, but individual strains displayed heterogeneous defects, and there was no clear-cut correspondence between the specific mutations and specific categories of defect. These findings suggest that when they are deprived of their normal regulators, septin scaffolds collapse into a limited repertoire of aberrant states in which the nature of the mutant regulators influences the probability of a given aberrant state.  相似文献   

18.
The exchange of 18O between H2O and long-chain free fatty acids is catalyzed by pancreatic carboxylester lipase (EC 1.1.1.13). For palmitic, oleic, and arachidonic acid in aqueous suspension and for 13,16-cis,cis-docosadienoic acid (DA) in monomolecular films, carboxyl oxygens were completely exchanged with water oxygens of the bulk aqueous phase. With enzyme at either substrate or catalytic concentrations in the argon-buffer interface, the exchange of DA oxygens obeyed a random sequential mechanism, i.e., 18O,18O-DA in equilibrium with 18O,16O-DA in equilibrium with 16O,16O-DA. This indicates that the dissociation of the enzyme-DA complex is much faster than the rate-limiting step in the overall exchange reaction. Kinetic analysis of 18O exchange showed a first-order dependence on surface enzyme and DA concentrations, i.e., the reaction was limited by the acylation rate. The values of kcat/Km, 0.118 cm2 pmol-1 s-1, for the exchange reaction was comparable to that for methyl oleate hydrolysis and 5-fold higher than that for cholesteryl oleate hydrolysis in monolayers [Bhat, S., & Brockman, H. L. (1982) Biochemistry 21, 1547]. Thus, fatty acids are good "substrates" for carboxylester lipase. With substrate levels of carboxylester lipase in the interfacial phase, the acylation rate constant kcat/Km was 200-fold lower than that obtained with catalytic levels of enzyme. This suggests a possible restriction of substrate diffusion in the protein-covered substrate monolayer.  相似文献   

19.
20.
A novel lipolytic enzyme was isolated from a metagenomic library obtained from tidal flat sediments on the Korean west coast. Its putative functional domain, designated MPlaG, showed the highest similarity to phospholipase A from Grimontia hollisae CIP 101886, though it was screened from an emulsified tricaprylin plate. Phylogenetic analysis showed that MPlaG is far from family I.6 lipases, including Staphylococcus hyicus lipase, a unique lipase which can hydrolyze phospholipids, and is more evolutionarily related to the bacterial phospholipase A(1) family. The specific activities of MPlaG against olive oil and phosphatidylcholine were determined to be 2,957 ± 144 and 1,735 ± 147 U mg(-1), respectively, which means that MPlaG is a lipid-preferred phospholipase. Among different synthetic esters, triglycerides, and phosphatidylcholine, purified MPlaG exhibited the highest activity toward p-nitrophenyl palmitate (C(16)), tributyrin (C(4)), and 1,2-dihexanoyl-phosphatidylcholine (C(8)). Finally, MPlaG was identified as a phospholipase A(1) with lipase activity by cleavage of the sn-1 position of OPPC, interfacial activity, and triolein hydrolysis. These findings suggest that MPlaG is the first experimentally characterized phospholipase A(1) with lipase activity obtained from a metagenomic library. Our study provides an opportunity to improve our insight into the evolution of lipases and phospholipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号