首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study employed simultaneously methods to investigate particle and solute transport and reaction rates in sandy sediments inhabited by two worms (2500 m− 2) with different feeding modes. Heteromastus filiformis is a head-down deposit-feeder and the main activities exerted by this worm are transport of particles as faecal pellets from subsurface to surface sediments and burrow ventilation. Marenzelleria viridis is a surface deposit-feeder that actively searches for food by burrowing near the sediment surface, producing a network of ventilated galleries in this zone. M. viridis exhibited 1.5 to 2.2 times higher particle mixing rates (Db = 3.3 to 4 × 10− 3 cm− 2 d− 1) compared to H. filiformis. In M. viridis treatments, continuous advection (eddy diffusion) was the major factor influencing solute transport resulting in apparent diffusion rates (Da = 2.2 cm− 2 d− 1), which were 3 times higher than molecular diffusion within the sediment. In H. filiformis inhabited sediments, the transport of solutes was discontinuous and driven by a surprisingly high nonlocal exchange (α = 1.1-1.3 d− 1), emphasizing its strong irrigation effects. Accordingly, the enhancement of solute fluxes was more pronounced for H. filiformis compared to M. viridis. Depth integrated TCO2 production derived from diagenetic modelling, which takes into account three reaction zones, is in good agreement with rates obtained from measured fluxes, indicating the applicability of both approaches to get reliable rates. However, the reaction rates showed that the presence of animals had a modest effect on microbial carbon oxidation. The results proved that transport conditions are deeply related to feeding modes. Exchange of solutes was the most important transport process by H. filiformis, while M. viridis affected both mixing and solute transport.  相似文献   

2.
The aim of this work was to quantify the intensity of sediment mixing induced by the gallery-diffusor (functional bioturbation group) Hediste diversicolor as a function of density, using particles tracers (luminophores). In order to assess the impact of density on sediment reworking, a 1-D model was used to obtain sediment reworking coefficients such as Db (biodiffusion-like) and r (biotransport). Densities used in this experiment corresponded to population densities observed in the sampling area (Saint-Antoine Canal, Gulf of Fos, France): 144, 288, 577, 1153 indiv/m2. At first, results showed that neither luminophore maximum burying depth nor the more marked tracer accumulation areas were influenced by density. Thus density did not seem to have any influence on size of galleries or complexity of structure. Then, density-dependent relations with Db (biodiffusion-like mixing) and r (biotransport) were highlighted with an observed process intensity rate twice as high at highest worm density. On the other hand, Db and r per capita coefficients were negatively influenced by density. Db and r per capita at highest density were equal to ∼ 20% of individual Db and r obtained at the lowest density. Finally, this study showed the importance of density which appears to be a key parameter in the functioning of the sedimentary ecosystem.  相似文献   

3.
Field observations and experimental evidence have shown that bioturbation by the southern African sandprawn Callianassa kraussi may significantly influence the abundance and distribution of the filter-feeding bivalve Eumarcia paupercula and the grazing gastropod Nassarius kraussianus. It was hypothesized that (1) sediment reworking by C. kraussi negatively affects microalgal growth on the sediment surface, leading to a reduction in food intake by N. kraussianus, (2) sediment deposited by C. kraussi will also diminish the food uptake of E. paupercula by interfering with its filtration mechanism. To test these hypotheses, manipulative field and laboratory experiments were undertaken in which N. kraussianus and E. paupercula were added to treatments with and without C. kraussi, and their survival and gut chlorophyll-a content measured. The effects of C. kraussi on sediment erodability and on condition of E. paupercula (tissue mass/shell length) were determined in a second experiment. In the presence of C. kraussi, (1) microalgal consumption by both N. kraussianus and E. paupercula was halved; (2) condition and survival of E. paupercula were significantly reduced but survival of N. kraussianus was unaffected; and (3) sediment erodability was increased. A significant negative relationship was established between sediment erodability and condition of E. paupercula. Evidently C. kraussi exerts a strongly negative influence on the feeding of E. paupercula and N. kraussianus, and this may explain the scarcity of these organisms in areas containing high densities of C. kraussi.  相似文献   

4.
Nine (1–9) and seven (1–6, 10) compounds were isolated from the fruits of Sonneratia caseolaris and Sonneratia ovata, respectively. Their structures were identified by comparing their MS and NMR data as well as the physical properties with the literature. All the isolated compounds were screened against a rat glioma C-6 cell line using the MTT assay method; only compounds (-)-(R)-nyasol (1), (-)-(R)-4′-O-methylnyasol (2) and maslinic acid (6) were found to show moderate cytotoxic activity. Our findings from these two kinds of fruits can be used as a foundation for further chemotaxonomic studies on Sonneratia species. The nor-lignans (1, 2) and 6H-benzo[b,d]pyran-6-one derivatives (3, 4) were isolated from this genus for the first time, indicating that these two classes of compounds may tentatively be considered as taxonomic markers for Sonneratia genus.  相似文献   

5.
This experimental study quantified and compared particle-mixing and solute transport by the polychaetes Marenzelleria neglecta (2 g ww, 3200 ind. m− 2) and Hediste diversicolor (2 g ww, 800 ind. m− 2) in Baltic Sea sediments. Particle tracers (luminophores) were added to the sediment surface and their vertical distribution in the sediment was measured after 10 d. The rate of particle mixing was quantified using a gallery-diffusion model calculating the biodiffusion coefficient Db and the non-local transport parameter r. Bioirrigation was measured by adding an inert solute tracer (bromide) to the overlying water 1, 1.5 and 2 d before the end of the experiment, and quantified by calculating the net bromide flux and fitting the bromide profiles to a 1D diffusion model providing an apparent biodiffusion coefficient Da. The two polychaete worms displayed similar particle-mixing and solute transport efficiencies (based on total biomass) despite different modes of bioturbation. However, H. diversicolor was a more efficient particle-reworker and M. neglecta a more efficient bioirrigator, on an individual level. H. diversicolor buried a higher percentage (13%) of luminophores below the top 0.5 cm surface layer than M. neglecta (6%). Db did not differ between the two species (2.4 × 10− 3 cm2 d− 1) indicating a similar rate of diffusive mixing of the top sediment, however, the non-local transport parameter r was 2.5 y− 1 for H. diversicolor and zero for M. neglecta, suggesting no significant particle-transport below the biodiffusive layer by M. neglecta. The average individual net bromide fluxes obtained were ca. 0.01 mL min− 1 for H. diversicolor and 0.003 mL min− 1 for M. neglecta, corresponding to an area-specific rate of ca. 12 L m− 2 d− 1 at the used densities. Da did not differ between the two polychaetes, suggesting a higher individual solute exchange efficiency of M. neglecta considering the much higher ventilation rates reported for H. diversicolor than for Marenzelleria sp. The ongoing colonization of Baltic Sea sediments by M. neglecta at high densities may thus lead to an enhanced soluble release of both nutrients and contaminants. These results add information to the understanding of the potential effects of the invasion of M. neglecta on sediment biogeochemistry when competing with and/or replacing native species.  相似文献   

6.
7.
Marzia Breda 《Geobios》2005,38(2):151
Alces alces, Cervalces and Megaloceros giganteus are deer of approximately the same size whose limb bones could be exchanged if fragmentary so morphological features are needed, enabling identification of postcranials remains. In this work the limb bone features described by Pfeiffer (1999a) as distinguishing Cervalces latifrons from M. giganteus are re-analyzed and further developed, considering also the vertebral column, the articular girdles and the carpals and tarsal elements. This analysis is extended to the other Cervalces species (C. gallicus, C. carnutorum and C. scotti) and to the present-day moose Alces alces. It results in a substantial uniformity in the postcranial skeleton of the species of the genus Cervalces, confirming what has already been stated by Sher (1987), that the Alceini, in the Upper Pliocene, constituted an already well-defined morphological type that did not undergo further structural postcranial remodeling.  相似文献   

8.
9.
The aim of this study was to determine the effect of sediment grazing and burrowing activities of natural populations of Mictyris longicarpus on benthic metabolism, nitrogen flux and irrigation rates by comparing sediments taken from minimum disturbance exclusion cages and adjacent sediments subject to M. longicarpus activities. M. longicarpus reduced sediment surface chlorophyll a (approximately 77%), organic carbon (approximately 95%) and total nitrogen concentrations (approximately 99%) in comparison to ungrazed sediments. Consequently, they significantly reduced gross benthic O2 production (about 71%) and sediment O2 consumption (approximately 46%). Mean N2 fluxes showed net effluxes (276-430 μmol m−2 day−1) in the presences of M. longicarpus and net uptakes (194.09-449.21 μmol m−2 day−1) where they were excluded. The net uptake of N2 was most likely due to cyanobacteria fixing of N2, as dense microbial mats became established over the sediment surface in the absence of M. longicarpus grazing activity. Sediment irrigation/transport rates calculated from CsCl tracer dilution indicated greater irrigation rates in the exclusions (12.12-16.22 l m−2 h−1) compared to inhabited sediments (6.33-11.73 l m−2 h−1) and this was again was most likely due to the lack of grazing pressure which allowed large populations of small burrowing polychaetes to inhabit the organic matter rich exclusion sediments. As such, the main influence of M. longicarpus was the interception and consumption of transported organic material, benthic microalgae and other small infaunal organisms resulting in the removal of approximately 0.06 g m−2 day−1 of nitrogen and 12.12 g m−2 day−1 of organic carbon. This “cleansing” of the sediments reduced sediment metabolism and the flux of solutes across the sediment water interface and ultimately the heavy predation of M. longicarpus by transient species such as stingrays, results in a net loss of carbon and nitrogen from the system.  相似文献   

10.
Dinoflagellates include noxious microalgae responsible for the formation of toxic red tides and the poisoning of molluscs and crustaceans, resulting in important economic losses. As a consequence, the life cycle of these algae has been extensively studied, but the dormancy phase (cyst) in the sediment record is little known. In the intertidal zone, bioturbation, an important biological process resulting from the activities of benthic fauna, significantly influences the movement of particles in the sediments. Laboratory experiments have allowed comparing and quantifying the movements of fluorescent microspheres resulting from the activity of two polychaetes annelidae, Nereis virens and Nephtys caeca. The particles, which simulate 45 µm diameter dinoflagellate cysts, are deposited in flat aquaria at the surface or deep in the sediment. Photographs of the aquaria were taken at regular intervals, to observe, in a non-destructive manner, the movement of the particles and to calculate, using adapted software, the optical reworking coefficient (ORC) over time. A difference appears between the movements of the particles generated by both species of polychaetes. Nereis virens create “permanent” galleries that carry the microspheres deeply in the sediment during the digging, bioirrigation and feeding, and Nephtys caeca homogenize the particles in the first centimetres of sediment during its erratic movements. The study shows that the bioturbation generated by these organisms can modify the distribution of the 45 µm diameter dinoflagellate cysts in the sedimentary column, burying them or raising them back to the water-sediment interface.  相似文献   

11.
Aquatic organisms take up heavy metals from surrounding environments which accumulate in their body tissues. In the region of Auckland, New Zealand, the heavy metals, copper (Cu), lead (Pb) and zinc (Zn) are the primary sediment contaminants of concern. Previous investigations have revealed adverse effects of Cu and Zn, but not of Pb, on estuarine infauna and a higher sensitivity of the deposit-feeding bivalve Macomona liliana than the suspension-feeding bivalve Austrovenus stutchburyi to these metals. In order to further examine the bioavailability of Cu, Pb and/or Zn and their interactive effects, bioaccumulation of Cu, Pb and Zn was measured in M. liliana and A. stutchburyi after 10-day exposure to these metals in the laboratory. Both bivalves accumulated Pb and Zn, while bioaccumulation of Cu only occurred in A. stutchburyi in the presence of Zn. There was some evidence that the presence of Pb could increase bioaccumulation of Zn. Bioaccumulation was generally much higher in M. liliana than in A. stutchburyi, potentially suggesting their higher uptake rates of metals and thus explaining the higher sensitivity of M. liliana to these heavy metals. Bioaccumulation of Pb in the bivalves and its potential influences on the bioavailability of other metals indicated that, despite the lack of any evidence for acute toxicity of Pb in previous studies, it could still pose a potentially important environmental threat. Bioaccumulation of heavy metals found in the present study also highlights the needs for further investigations of potential chronic toxicity of these metals.  相似文献   

12.
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.  相似文献   

13.
In shallow coastal habitats scavenging netted whelks Nassarius reticulatus attached egg capsules to the stipes of red algae Chondrus crispus and occasionally on Furcellaria lumbricalis and Plumaria plumose. In the laboratory egg capsules were laid on aquaria sides and lids by individuals ≥ 21 mm shell length. Larger size classes produced more egg capsules and spawned over a longer period and in doing so partitioned less energy into shell growth. Large netted whelks (25-28.9 mm) produced larger capsules which contained significantly more and larger eggs than those produced by smaller individuals (21-24.9 mm). Egg capsule production continued throughout the year by regularly fed N. reticulatus held at ambient seawater temperatures. Egg production increased in the spring and summer with peak production during June (15 °C), decreased between August and October and resumed again during the winter (November to February at ∼ 7 °C). During the summer (15-16 °C) egg capsules were smaller and contained smaller eggs than those deposited during the winter (7-10 °C), although the number of eggs · capsule1 was similar. Enforced food limitation reduced the number and size of the egg capsules, the number and size of eggs produced · female1 and the duration of the breeding period. Hatching success of N. reticulatus egg capsules was high (95%) even at winter seawater temperatures (11-8.5 °C) and the duration of embryonic development was fastest between 15 and 17.5 °C.  相似文献   

14.
During the molluscan evolution leading to the bivalves, the single dorsal shell was doubled. To elucidate the molecular developmental basis underlying this prominent morphological transition, we described the cell cleavage and expression patterns of three genes, brachyury, engrailed, and dpp in the Japanese spiny oyster Saccostrea kegaki, and examined the function of dpp in this species. The cleavage pattern of the S. kegaki embryo was nearly the same as the previously described pattern of other bivalve species, suggesting that the pattern itself is highly important for the establishment or the maintenance of the bivalve body plan. The expression pattern of a brachyury homolog in S. kegaki (SkBra) was similar to the pattern in gastopods even at the single cell level despite the deep divergence of gastropods and bivalves. Engrailed and dpp were previously found to be expressed around the shell anlagen in gastropods. Like that of gastropods, an engrailed homolog in S. kegaki (SkEn) was found to be expressed around the shell anlagen. However, the dpp homolog in S. kegaki (SkDpp) was expressed only in the cells along the dorsal midline. ZfBMP4 treatment experiments revealed the importance of dpp in establishing the characteristic shape of the bivalve shell anlagen.  相似文献   

15.
The effects of season and qualitative selection capacity on trophic relationships between two sympatric invasive suspension-feeders, Crepidula fornicata and Crassostrea gigas, were investigated in Bourgneuf Bay (France) from January 2003 to June 2004. Carbon and nitrogen stable isotopic deviations, δ13C and δ15N, of common Atlantic slippersnails and Pacific oysters were analysed relative to isotopic composition and availability of end-members.Slippersnail deviations were less variable over the sampling period compared with those of oysters. Significant differences between δ13C and δ15N of C. fornicata and C. gigas were found from winter to early summer, and linked to major isotopic changes in oysters. We identified three distinct seasonal periods: January to March when oysters were 15N-enriched compared to slippersnails and to themselves at other times of the year, April to June-July when oysters showed a 15N-depletion and a more marked 13C-depletion compared to slippersnails and to themselves at other times of the year, and July-August to December when both species presented similar carbon and nitrogen deviations. Species-specific differences in qualitative selection capability may explain these seasonal differences in isotopic deviations. Whereas the isotopic composition of the indiscriminate suspension-feeding slippersnails reflects the composition of the seston throughout the year, the oyster is capable of qualitative selection. The oyster isotopic compositions are consistent with a facultative activation of selection mechanisms under conditions of qualitative and quantitative food limitation, notably the preferential ingestion and assimilation of the dominant organic source in the suspended pool.We conclude that C. fornicata and C. gigas are trophic competitors only in winter and spring at this site, where detrital end-members are major POM components. These results underscore (1) the importance of long-term (annual) studies in the evaluation of potential trophic competition, and (2) the necessity to include the qualitative selection capacities of suspension-feeders in future interpretations of trophic relationships in marine coastal ecosystems.  相似文献   

16.
17.
18.
The understanding of the dominance of one species with respect to others is a pertinent challenge in HAB growth dynamics studies and the nutrient supply mode is one of the factors potentially involved. The competition for phosphorus (P) between a toxic species, Alexandrium minutum, and a non-toxic species, Heterocapsa triquetra, was studied (1) along a gradient of P depletion, (2) testing different P depletion degrees before a single PO4 supply and (3) experimenting different PO4 supply frequencies. In conditions of PO4 depletion, H. triquetra stopped growing after two days both in monospecific and mixed batch cultures whereas A. minutum grew progressively from day 2 until the end of the experiment. This time-lag growth of A. minutum is associated to its ability to store P intracellularly and then mobilize it for cell division when P depletion becomes severe. Heterocapsa triquetra outcompeted A. minutum when it was submitted to less than three days of P depletion before the pulse. In contrast, A. minutum outcompeted H. triquetra after more than three days of depletion. This transition was related to the capacity for A. minutum to increase its cell PO4 uptake rate in a higher proportion to face potential PO4 supply. As a result of this physiological acclimatation to P starvation, A. minutum consumed the whole PO4 pulse supplied after 3 to 10 days of P depletion. This resulted in a reduction of H. triquetra growth. These two acclimatations were confirmed in a P limited semi-continuous culture experiment testing several PO4 supply frequencies (1, 2, 4, 6 day intervals). These experiments revealed that A. minutum is a “storage specialist” species for P, which uptakes PO4 pulses for luxury consumption, survives depletion periods and, then, utilizes P for cell growth. In contrast, H. triquetra is more a “velocity adapted” species, which utilizes PO4 just after supply to increase their cell division rate.  相似文献   

19.
为揭示影响高山姬鼠和中华姬鼠夏季空间分布的生态因素,采用样线法和样方取样法,于2009年6—8月在四川省唐家河国家级自然保护区内对两种姬鼠的生境选择进行了比较研究。结果表明:两种姬鼠主要利用坡度平缓,郁闭度、落叶层盖度、乔木胸径和高度较小,灌木、竹子和草本密度适中而草本盖度较大的生境;高山姬鼠频繁出现在海拔较低(1400 m左右)、草本植物较大(平均高度为16—30 cm)的生境中,而中华姬鼠频繁出现在海拔较高(1900 m左右)、草本植物较小(平均高度<15 cm)的生境中。此外,高山姬鼠频繁出现在竹林较矮(平均高度<1 m)、水源距离较近(<50 m)、植被演替阶段较低(小树林)的常绿-落叶阔叶混交林中,而中华姬鼠对这4种生态因子无明显的选择性。两种姬鼠在对生境的利用上虽具一定重叠性,但对诸多生境变量选择上的差异表明各自具有不同的生境利用模式。海拔、植被演替阶段、郁闭度和草本高度4个生境变量判别函数系数的绝对值明显大于其他变量,表明高山姬鼠和中华姬鼠在生境上的分割可能主要与这4个变量有关。生境利用模式的不同有助于两种姬鼠同域共存。  相似文献   

20.
Eutrophication in the northern Baltic Sea promotes growth of annual filamentous algae. The algae detach, gather at the bottom and give rise to algal mats of varying size, density, composition and condition. Dense mats of filamentous algae induce anoxia, which in turn leads to faunal mortality. By a set of field experiments, we have studied the fate of the abundant Cladophora glomerata after detaching from the rocky substrate, and the effect of water depth and sediment on its decay. Further, we have studied the importance of common mesograzers (Gammarus and Idotea) on the rate of degradation of C. glomerata and Pilayella littoralis.Our results show that loose algae at shallow sites (8 m) decompose faster than algae in deeper (18 m) areas. Drifting C. glomerata on the sediment is more rapidly broken down and dissolved than algae floating in the water column, which depends on higher microbiological activity. Dominant amphipods (Gammarus spp) colonise near-shore drift algae quickly, and juvenile bivalves (Cerastoderma glaucum) utilise algae in the water column for settling. Moderate natural densities of grazers (Gammarus spp and Idotea baltica) in the drifting algae did not increase the degradation rates of C. glomerata and P. littoralis. C. glomerata was completely decomposed in 4 months.Our experiments demonstrate the effects of position (depth, water/sediment) and grazing on the degradation of drifting filamentous algae. Mass developments of opportunistic algae occur annually in the study area, and information on the destiny of detached drift algae may help us to predict their longevity and the damage they cause, and hence, to decide on long-term measures needed to improve environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号