首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The biomass and production of picophytoplankton, large phytoplankton and heterotrophic bacterioplankton were measured in humic Lake Örträsket, northern Sweden during four consecutive summers.
2. High flow episodes, carrying fresh dissolved organic carbon (DOC) into the lake, always stimulated heterotrophic bacterial production at the expense of primary production. Primary production never exceeded bacterial production for approximately 20 days after such an episode had replenished epilimnial DOC. We suggest that allochthonous DOC is an energy source that stimulates bacterioplankton that, because of their efficient uptake of inorganic nutrients, are then able to outcompete phytoplankton. After the exhaustion of readily available DOC, phytoplankton were able to dominate epilimnion production in Lake Örträsket.
3. Biomass production was higher when dominated by phytoplankton than by bacterioplankton, despite a similar utilization of nutrients in the epilimnion throughout the summer. We propose that different C : N : P ratios of bacterioplankton and phytoplankton permit the latter to produce more carbon (C) biomass per unit of available inorganic nutrients than bacterioplankton.  相似文献   

2.
Abstract Free-living and attached bacterial population sizes were determined fortnightly from December 1991 to December 1992 in natural and disturbed areas of an Amazonian clear water lake (Batata Lake, Pará, Brazil) impacted by bauxite tailings. The bacterioplankton showed distinct patterns during different phases of the hydrological cycle. Total bacterial population size and rates of thymidine incorporation (measured during high and low water phases) were high during low water, with values ranging from 3.3 × 105 to 1.1 × 106 cells ml−1, and from 0.28 to 4.01 μg C l−1 h−1, respectively. The population size of free-living bacteria was larger at the natural station, while no differences were observed between attached bacterial populations at both stations. However, production and turnover rate of attached bacteria were high at the disturbed area. During low water, bacterial growth appeared to be driven mainly by the input of dissolved organic carbon (DOC) from phytoplankton origin. During high water, bacterial abundance was reduced, probably as the result of dilution and the input of less labile DOC from floodplains. The presence of bauxite tailings seems to influence bacterial dynamics in an indirect way, probably due to shading of phytoplankton cells and, hence, reducing the DOC supply for bacterial growth. This study, the first on the microbial ecology of an Amazonian clear water lake, demonstrated that water level variations exert a strong influence on the bacterioplankton dynamics. Received: 9 January 1996; Accepted 6 November 1996  相似文献   

3.
Pelagic food web processes in an oligotrophic lake   总被引:2,自引:2,他引:0  
Major pelagic carbon pathways, including primary production, release of extracellular products (EOC), bacterial production and zooplankton grazing were measured in oligotrophic Lake Almind (Denmark) and in enclosures (7 m3) subjected to artificial eutrophication. Simultaneous measurements at three days interval of carbon exchange rates and pools allowed the construction of carbon flow scenarios over a nineteen day experimental period.The flow of organic carbon was dominated by phytoplankton EOC release, which amounted from 44 to 58% of the net fixation of inorganic carbon. Gross bacterial production accounted for 33 to 75% of the primary production. The lower values of EOC release (44%) and bacterial production (33%) were found in the enclosures with added nutrients. The release of recently fixed photosynthetic products was the most important source of organic carbon to the bacterioplankton. Uptake of dissolved free amino acids was responsible for 52 to 62% of the gross bacterial production. Thus, amino acids constituted a significant proportion of the EOC. Zooplankton (< 50 µm) grazing on algae and bacteria accounted only for a minor proportion of the particulate production in May. Circumstantial evidence is presented that suggests the chrysophycean alga Dinobryon was the most important bacterial remover.The results clearly demonstrated EOC release and bacterial metabolism to be key processes in pelagic carbon cycling in this oligotrophic lake.  相似文献   

4.
The spring development of both phytoplankton and bacterioplankton was investigated between 18 April and 7 May 1983 in mesotrophic Lake Erken, Sweden. By using the lake as a batch culture, our aim was to estimate, via different methods, the production of phytoplankton and bacterioplankton in the lake and to compare these production estimates with the actual increase in phytoplankton and bacterioplankton biomass. The average water temperature was 3.5°C. Of the phytoplankton biomass, >90% was the diatom Stephanodiscus hantzchii var. pusillus, by the peak of the bloom. The 14C and O2 methods of estimating primary production gave equivalent results (r = 0.999) with a photosynthetic quotient of 1.63. The theoretical photosynthetic quotient predicted from the C/NO3 N assimilation ratio was 1.57. The total integrated incorporation of [14C]bicarbonate into particulate material (>1 μm) was similar to the increase in phytoplankton carbon determined from cell counts. Bacterioplankton increased from 0.5 × 109 to 1.52 × 109 cells liter−1 (~0.5 μg of C liter−1 day−1). Estimates of bacterioplankton production from rates of [3H]thymidine incorporation were ca. 1.2 to 1.7 μg of C liter−1 day−1. Bacterial respiration, measured by a high-precision Winkler technique, was estimated as 4.8 μg of C liter−1 day−1, indicating a bacterial growth yield of 25%. The bulk of the bacterioplankton production was accounted for by algal extracellular products. Gross bacterioplankton production (production plus respiration) was 20% of gross primary production, per square meter of surface area. We found no indication that bacterioplankton production was underestimated by the [3H]thymidine incorporation method.  相似文献   

5.
We measured bacterioplankton (phylotypes detected by fluorescent in situ hybridisation, morphometric forms, abundance and production) in samples collected in summer in the littoral and pelagic zones of 10 subtropical shallow lakes of contrasting area (from 13 to 80,800 ha). Compared to the pelagic zones, the littoral zones were overall characterised by higher macrophyte dominance and lower concentrations of total phosphorus and alkalinity and higher concentrations of dissolved organic carbon (DOC) and humic substances. Similarities of bacterial production and biomass turnover and density of active phylotypes and morphotype proportions were related to similarities in a set of environmental variables (including nutrients, humic substances content, predator density and phytoplankton biomass), and some additionally to lake area. Horizontal heterogeneity in bacterioplankton variables (littoral versus pelagic) increased with lake area. Bacterioplankton biomass and production tended to be lower in the littoral zone than in the pelagic zone despite higher concentrations of DOC and humic substances. A likely explanation is higher predation on bacterioplankton in the littoral zone, although allelophatic effects exerted by macrophytes cannot be excluded. Our results indicate that organic cycling via bacterioplankton may be less efficient in the littoral zone than in the pelagic zone of shallow lakes.  相似文献   

6.
We analyzed bioavailability, photoreactivity, fluorescence, and isotopic composition of dissolved organic carbon (DOC) collected at 13 stations in the Sacramento–San Joaquin River Delta during various seasons to estimate the persistence of DOC from diverse shallow water habitat sources. Prospective large-scale wetland restorations in the Delta may change the amount of DOC available to the food web as well as change the quality of Delta water exported for municipal use. Our study indicates that DOC contributed by Delta sources is relatively refractory and likely mostly the dissolved remnants of vascular plant material from degrading soils and tidal marshes rather than phytoplankton production. Therefore, the prospective conversion of agricultural land into submerged, phytoplankton-dominated habitats may reduce the undesired export of DOC from the Delta to municipal users. A median of 10% of Delta DOC was rapidly utilizable by bacterioplankton. A moderate dose of simulated solar radiation (286 W m−2 for 4 h) decreased the DOC bioavailability by an average of 40%, with a larger relative decrease in samples with higher initial DOC bioavailability. Potentially, a DOC-based microbial food web could support ≤0.6 × 109 g C of protist production in the Delta annually, compared to ≈17 × 109 g C phytoplankton primary production. Thus, DOC utilization via the microbial food web is unlikely to play an important role in the nutrition of Delta zooplankton and fish, and the possible decrease in DOC concentration due to wetland restoration is unlikely to have a direct effect on Delta fish productivity.  相似文献   

7.
In an attempt to assess bacterioplankton production and growth yieldunder low temperature conditions and to compare bacterioplankton withphytoplankton production in the ice-covered water column of the shallowNeusiedler See, outdoor measurements under near in situ conditions wereperformed during the winter of 1995/96. During the investigation period,mean chlorophyll (Chl) a concentration was 21.03 ± 14.95 µg Chla l-1. Phytoplankton primary production integrated over thewater column ranged from 1.35 to production integrated over the water columnranged from 1.35 to 4.23 mg C m-2 d-1 (mean± SD = 2.46 ± 1.06 mg C m-2d-1). Bacterial abundance varied from 20 to 40×105 ml-1 for most of the investigationperiod and increased by the end of March concomitantly with the increase intemperature from 1.3 to 6.3 °C within 5 days. Mean bacterial productionwas 15.3 ± 12.8 µg C l-1 d-1(range: 3.0 to 41.7 µg C l-1 d-1) and meanbacterial growth rate 0.23 ± 0.16 d-1 following closelythe pattern in bacterial production. DOC concentration declined linearlyfrom 20.7 mg C l-1 to 16.45 mg C l-1 over the 4months period of ice cover. The contribution of humic substances to thetotal DOC pool declined from 43.6% at the end of November to37.3% at the end of March. Calculated on an area basis, phytoplanktonproduction amounted to only 16% of bacterial production which makesit unlikely that phytoplankton supply substrate for bacterioplankton growthin significant quantities when the lake is ice covered. From the observeddecline in DOC over the investigation period and assuming only negligibleinput of DOC from other sources we calculated an average DOC uptake by thebacterioplankton community of 47.5 µg C l-1d-1 resulting in a bacterial growth efficiency of 15.9%for the ice covered conditions. Based on the growth efficiency we estimatethat pelagic primary production amounts to 2.8% of the bacterialcarbon demand. This might indicate that the bacterioplankton in NeusiedlerSee sustain their high growth rates at low temperatures (<2°C formost of the investigation period) by using probably the DOC originating fromthe previous season. This DOM stems most likely from the decay of the reedPhragmites australis and its epiphytes and, probably of minor importance,from phytoplankton leachates.  相似文献   

8.
Bacterioplankton production in freshwater Antarctic lakes   总被引:5,自引:0,他引:5  
1. Bacterioplankton production was measured in the water columns of two ultra‐oligotrophic, freshwater Antarctic lakes (Crooked Lake and Lake Druzhby) during an annual cycle. In both lakes bacterial production, measured by the incorporation of [3H] thymidine, continued in winter and showed a cycle over the year. The range of production was between 0 and 479 ng C L?1 h?1 in Crooked Lake and 0–354 ng L?1 h?1 in Lake Druzhby. 2. Abundance and mean cell volume both varied, producing marked changes in biomass during the year, with highest biomass occurring in the winter and early spring. Biomass showed similar seasonal trends in both lakes. 3. For most of the year inorganic forms of nitrogen and phosphorus were detectable in the water columns of the lakes and were unlikely to have limited bacterial production. Dissolved organic carbon (DOC) was below 3000 μg L?1. Dissolved amino acids and carbohydrates contributed 5–25% of the DOC pool in Crooked Lake and 5–64% in Lake Druzhby. Dissolved carbohydrates were consistently low, suggesting that this may have been the preferred carbon substrate for bacterioplankton. 4. Aggregate associated bacteria had higher mean cell volume, abundances and production than freely suspended bacteria in Lake Druzhby, while in Crooked Lake aggregate associated bacteria consistently had higher mean cell volumes than free bacteria, but abundance and production were on occasion higher in free bacteria compared with aggregate associated communities. 5. The data indicated that production is limited by continuous low temperatures and the limited availability of suitable DOC substrate. However, the bacterioplankton functions year round, responding to factors other than temperature.  相似文献   

9.
1. Laboratory experiments were conducted to test the effect of nutrient enrichment on bacterioplankton growth in the presence and absence of phytoplankton. 2. In one series of experiments, bacterioplankton growth in terms of specific activity [3H-thymidine incorporation (cell number)?1] was greater in whole lake water samples than in samples from which phytoplankton had been removed by filtration (1.0 μm), regardless of the nutrient enrichments (control, NH+4 plus PO3-4 and mannitol). Organic C enhanced bacterioplankton growth in both whole and filtered lake water. 3. In another series of experiments (with the same nutrient enrichments as in the first experiment except that glucose replaced mannitol), bacterioplankton growth in whole lake water enriched with PO3-4 plus NH+4 and incubated in the light was greater than in two treatments designed to inhibit photosynthetic activity (+DCMU and dark). Bacterioplankton response to nutrient addition was greatest in the PO3-4 plus NH+4 enrichment under all three conditions (light +DCMU, and dark). 4. These results indicate that bacterioplankton growth could be directly limited by inorganic P and N when these elements are in short supply. Enhancement of bacterioplankton growth by phytoplankton occurs only under PO3-4 and NH+4 replete environments.  相似文献   

10.
Production parameters for bacterioplankton were assessed during the spring–summer period in the western parts of the Sea of Okhotsk and the Bering Sea, as well as in northwestern Pacific Ocean. The lowest values of bacterial production were observed in early June during the spring phytoplankton bloom (0.08 mg C day–1 m–3), while the maximum values (up to 55 mg C day–1 m–3) occurred in late July?early August, 1.5 to 2 months after the bloom. The concentration of dissolved organic matter, the substrate for bacterioplankton, was assessed using satellite data. The ratio between bacterial and primary production in the surface samples varied from 0.5% at the peak of phytoplankton bloom to 180% at the peak of bacterioplankton development.  相似文献   

11.
Environmental factors accountable for bacterioplankton or phytoplankton biomass dominance were analysed in a confined Mediterranean salt marsh (Empordà Wetlands, NE Spain). Two basins located in the same salt marsh, and with differences in size and catchment's area were compared, during four characteristic situations of the hydroperiod. Since bacterio- or phytoplankton relationships may be affected by other factors such as diel variations or vertical differences in nutrient composition and distribution, high frequency fluctuations due to these factors were also taken into account. Differences in catchment area appeared to be the more plausible explanation of differences in nutrient and organic carbon accumulation among basins, since during confinement basins essentially accumulate the allochthonous nutrient and organic matter supplies that previously entered by runoff. DOC (Dissolved Organic Carbon) favoured the bacterioplankton biomass increase, but also was the main variable significantly affecting phytoplankton biomass. Basins showed marked differences in bacterio- and phytoplankton dominances. Relationships between phytoplankton and bacterioplankton were positive, negative or not significant, depending on the basin and on the period of the year. The phytoplankton mixotrophic capabilities, both phagotrophy and osmotrophy, and their production of UV-screening compounds, as sunscreen, may explain the significant correlation between DOC and phytoplankton biomass, and the significant effect of phytoplankton on bacterioplankton found in these ecosystems.  相似文献   

12.
The heterotrophic assimilation of extracellular organic carbon (EOC) released by Littorella uniflora (L.) Aschers. was assayed. Utilization and decompostion of EOC by heterotrophs in the periphyton community were measured in a two-chamber open flow-system and, by the bacterioplankton, in bottle incubations. Under the experimental conditions 12–30% of the released EOC was metabolized in the periphyton community. This corresponded to a theoretical removal rate of 72–100% h?1. The bacterioplankton assimilated EOC more slowly (1% h?1). These results show that the EOC (mainly small molecules < 700 Daltons) was highly labile and accessible to heterotrophic microorganisms. The EOC released by submerged macrophytes in Lake Kalgaard is distributed approximately 20% to the periphyton community, 20% to the bacterioplankton, and 60% to the sediment.  相似文献   

13.
Flow regulation in lowland rivers has reduced the amount of allochthonous dissolved organic carbon (DOC) entering main channels through less frequent wetting of benches, flood runners and floodplains. The hypothesis tested was that lowland riverine bacterioplankton are DOC limited when flow events are absent and simulating an increase in assimilable DOC similar to that expected during an environmental flow will lead to heterotrophic dominance. Experiments took place in the Namoi River, a highly regulated lowland river in Australia. Specifically, in situ microcosms were used to examine the responses of bacterioplankton and phytoplankton to various additions of DOC as glucose or leaf leachate, with and without additions of inorganic nutrients. The results indicated that ambient DOC availability limited the bacterioplankton for the three seasons over which we conducted the experiments. When DOC was added alone, dissolved oxygen concentrations decreased primarily because of increased bacterial respiration and bacterioplankton growth generally increased relative to controls. Additions of DOC alone led to a pattern of decreased chlorophyll a concentration relative to controls, except for willow leachate. Additions of inorganic nutrients alone increased chlorophyll a concentrations above controls, indicating limitation of phytoplankton. These findings support our hypothesis. Based on the present results, environmental flows should increase the duration of allochthonously driven heterotrophic dominance, thus shifting regulated lowland rivers to more natural (pre-regulation) conditions for greater periods.  相似文献   

14.
This report presents results on relationships between the kinetics (Vmax and Km) of -glucosidase (GLCase) and aminopeptidase (AMPase) activity, and dissolved organic carbon (DOC) and bacterial secondary production in freshwater mesocosms of differing degrees of eutrophication. These relationships varied in different mesocosms and depended on the trophic status of water and the exudation rates of organic carbon (EOC) by phytoplankton. Close coupling of bacterial production to Vmax of GLCase activity was observed only in nutrient-enriched mesocosms. The relationship between GLCase and DOC content was also significant in enriched water. There was no correlation between the Vmax, of GLCase and DOC and bacterial production in nutrient-impoverished and control (mesotrophic) enclosures. However, the Vmax of AMPase correlated well to DOC and bacterial production in these mesocosms. AMPase activity did not correlate with DOC and bacterial production in nutrient-impoverished mesocosms. There was no relationship between bacterial biomass and enzyme activity in all studied mesocosms. Comparison of the rates of phytoplankton production of EOC and rates of the bacterial organic carbon demand (BOCD) in nutrient-impoverished mesocosms showed that EOC flux constituted, on average, 90% of BOCD. However, in nutrient-enriched mesocosms EOC contributed only, on average, 27% to the BOCD; thus, in these mesocosms, bacteria were probably organic-carbon limited. It is hypothesized that to bypass substrate limitation, bacteria produced GLCase and AMPase. These enzymes had a high specific activity and high affinity to their substrates and efficiently hydrolyzed polysaccharides and proteins, thereby supplying microorganisms with readily utilizable products of enzyme catalysis. Offprint requests to: R.J. Chróst.  相似文献   

15.
Application of eucaryote inhibitors to the estimation of production and grazing mortality of bacterioplankton was evaluated. Exposure to a range of concentrations of thiram, cycloheximide, and neutral red (0.4 to 210, 36 to 1,777, 4 to 346 μM, respectively) was 98 to 100% effective at inhibiting growth of a chrysomonad in culture. Exposure to colchicine and griseofulvin (50 to 1,000 μM for both) yielded only 24 to 94 and 53 to 79% inhibition, respectively. Exposures to thiram, neutral red, and griseofulvin were 90 to 100% effective at inhibiting growth in culture of a ciliate, Cyclidium sp., and the responses to colchicine and cycloheximide were variable (64 to 100 and 0 to 100% inhibition, respectively). Thiram and neutral red inhibited field populations of nanozooplankton more effectively than cycloheximide and colchicine. Direct effects of eucaryote inhibitors on growing cultures of bacterioplankton varied with parameters measured and duration of exposure. After 3-day exposures, specific growth rates and “instantaneous” heterotrophic potential ([14C]glucose uptake) were not consistently affected, but biosynthetic activity (RNA and DNA syntheses) was depressed. The degree of inhibition of isolates and field populations of phytoplankton depended upon type of inhibitor and phytoplankton species. In field experiments, it was possible to calculate rates of bacterioplankton production and grazing mortality for only 16 of 29 inhibitor experiments and for 4 of 10 size fractionation experiments. Bacterioplankton production and mortality estimates varied greatly with the eucaryote inhibitor used, and those derived from inhibition techniques were substantially different from those derived from fractionation techniques. The poor performances of both techniques are attributed to the following: (i) effects of inhibitors on phytoplankton, (ii) indirect effects of the inhibitors on bacterioplankton, and (iii) insufficient separation of grazers from prey by filtration techniques. Because of the inconsistent results obtained in this investigation, we strongly recommend exercising caution in the application of inhibitor techniques to ecological problems, especially in phototrophically dominated systems.  相似文献   

16.
During three periods of 16 to 25 days, bacterioplankton production, bacterial cell volume, chlorophyll a, CO2 assimilation, and particulate organic carbon were measured in enclosures situated in the eutrophic estuary Roskilde Fjord, Denmark. The enclosures were manipulated with respect to sediment contact and contents of inorganic nutrients, planktivorous fish, and suspension-feeding bivalves. Nutrient enrichment, the presence of suspension feeders, and sediment contact induced pronounced changes in bacterial production, as well as minor changes in bacterial cell volume; however, these effects seemed to be indirect, transmitted via phytoplankton. Bacterial production, measured as [3H]thymidine incorporation, closely followed changes in phytoplankton biomass and production, with time lags of 5 to 10 days. Good correlations of mean bacterioplankton production to chlorophyll a concentration and CO2 assimilation suggested phytoplankton to be the dominating source of bacterial substrate, apparently independent of nutrient stress. Zooplankton >140 μm, bivalves, and sediment seemed to provide insignificant, if any, substrate for bacterioplankton, and benthic suspension feeders seemed not to act as direct competitors for dissolved organic carbon. The bacterioplankton mean cell volume, measured by image analysis, changed seasonally, with the smallest cells during the summer. Within each period, the bacterial cell volume correlated positively to growth rate and negatively to temperature.  相似文献   

17.
1. Lakes formed in mining pits often contain high concentrations of dissolved ferric iron and sulphate (e.g. 2 and 16 mmol L?1, respectively) and the pH is buffered between 2.5 and 3.5. Efforts to neutralise their water are based on the stimulation of lake internal, bacterial iron‐ and sulphate reduction. Electron donors may be supplied by organic carbon compounds or indirectly by enhancement of primary production. Here, we investigated the function of mixotrophic algae, which can potentially supplement or deplete the organic carbon pool, in the carbon metabolism and alkalinity budget of an acidic mining lake. 2. Two weeks after organic substrates had been added in a large in situ mesocosm of 30 m diameter, a bloom of Chlamydomonas occurred, reaching a biovolume of 80 mm3 L?1. Growth experiments using filtered lake water showed that the alga reduced the overall dissolved organic carbon (DOC) concentration despite significant photosynthetic activity. However, when Chlamydomonas were grown together with natural bacterioplankton, net DOC consumption did not increase. 3. Uptake experiments using [14C]‐glucose indicated that bacteria dominated glucose uptake and remineralisation. Therefore, the DOC leached in the water column was processed mainly by planktonic bacteria. Leached DOC must be regarded as loss, not transferred by larger organisms to the sediment, where reduction processes take place. 4. From phytoplankton biomass and production 2 years after fertilisation we estimated that pelagic photosynthesis does not supply an electron donor capacity capable of reducing more than 2% of actual stock of acidity per year. We estimated that only the benthic primary production was in a range to compensate for ongoing inputs of iron and sulphate.  相似文献   

18.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

19.
Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter (DOM) in the interaction between reefs and the surrounding ocean remains limited. In this study, we present the results of a 4-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 μmol l−1 DOC and 5.5 × 108 cells l−1 offshore and 68 μmol l−1 DOC and 3.1 × 108 cells l−1 over the reef, respectively) across a 4-year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Betaproteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because fringing reefs do not exhibit long residence times (unlike those characteristic of atoll lagoons) and because oceanic DOC is generally recalcitrant to degradation by ambient microbial assemblages. Our findings thus have interesting implications for the role of oceanic DOM and bacterioplankton in the ecology and metabolism of reef ecosystems.  相似文献   

20.
1. Two small humic lakes in northern Sweden with concentrations of dissolved organic carbon (DOC) between 15 and 20 mg L–1 were fertilized with inorganic phosphorus (P) and inorganic nitrogen (N), respectively. A third lake was unfertilized and served as a control. In addition to this lake fertilization experiment, data from different regional surveys were used to assess the role of different limiting factors.
2. The P fertilization had no effects on bacterioplankton or phytoplankton, while phytoplankton were significantly stimulated by N fertilization. Inorganic nutrient limitation of bacterioplankton was a function of DOC concentration in water of the investigated region and nutrient-limited bacteria were found only in lakes with DOC concentrations less than around 15 mg L–1
3. The fertilization experiments demonstrated that the DOC-rich experimental lakes contained a bioavailable pool of P that was not utilized to its full potential under natural conditions. The overall mobilization of energy (bacterioplankton plus phytoplankton) in the experimental lakes was restricted by lack of inorganic N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号