首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recruitment patterns of scleractinian corals were investigated at the Gneering Shoals, a coral-dominated rocky-reef south of the Great Barrier Reef, in subtropical Queensland. The density of recruits (mean of 0.8 to 6.3 recruits per tile (15 cm × 15 cm) pair from 4 sites) was the lowest ever recorded from six regions in tropical or subtropical eastern Australia that have been studied using directly comparable methods. Recruitment in summer was dominated by recruits from the Family Acroporidae, while corals from the Family Pocilloporidae recruited throughout the year. Recruits of massive corals andTurbinaria sp., which dominate the established coral communities, were absent. Possible explanations for the low recruitment rate in the region, include the depth of most sites (> 10m), competition for space with fouling organisms, and isolation, that is the failure of the south flowing East Australian Current to supply tropical larvae regularly from the Great Barrier Reef, 250 km to the north. The low coral recruitment rate at Gneering Shoals indicates that this region is unlikely to act as a stepping-stone for dispersal of tropical corals to more southern regions, which are more directly influenced by the East Australian Current.  相似文献   

2.
Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore’s reefs appears relatively constrained, which could lead to less resilient reefs.  相似文献   

3.
The density of recruits of scleractinian corals on settlement plates at Lord Howe Island, a small isolated sub-tropical island 630 km off the Australian coastline, was within the range of values reported for comparable studies on the Great Barrier Reef. However, there was a difference in the relative abundance of taxonomic groups, with recruitment at Lord Howe Island during the summer of 1990/91 dominated by corals from the Family Pocilloporidae, Family Poritidae, and sub-genus Acropora (Isopora) (in order of abundance). By contrast, on the Great Barrier Reef, recruits are generally predominantly species from the Family Acroporidae (other than the Acropora (Isopora) group). Both the recruits and the established coral communities at Lord Howe Island are dominanted by corals which release brooded planulae, as opposed to the pattern of mass-spawning with external fertilisation more typical of Great Barrier Reef corals. I hypothesise that the release of brooded planulae would be advantageous in an isolated reef community because (a) brooded larvae can travel large distances and survive the journey to the isolated reef and/or (b) brooded larvae have a shorter period before they are competent to settle and are therefore more likely to be retained on the parental reef once a population has been established.  相似文献   

4.
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms ‘recruit’ and ‘recruitment’ have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.  相似文献   

5.
Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10–35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs.  相似文献   

6.
In this study, coral recruitment was measured on a kilometer-wide scale over two years on shallow (5-6 m depth) fringing reefs in St. John, US Virgin Islands, with the objective of determining the extent to which variation in recruitment was affected by biophysical coupling involving temperature and flow. Coral recruitment was measured using settlement tiles deployed at 10 sites along 10 km of shore. The tiles were first deployed in August 2006, and thereafter replaced every ≈ 6 months to sample from either August to January, or January to August over 2 years. Seawater temperature was recorded at the 10 sites using logging thermistors, and flow was quantified using drogues. Overall, corals recruited at a rate equivalent to 76 corals m− 2 6 months− 1, and were represented mostly by poritids (43% of recruits), agaricids (29%), faviids (17%) and siderastreids (7%). Although the density of recruits differed among sites in a pattern that varied among periods and years, there was a consistent trend for mean density to decline from ≈ 4 corals tile− 1 at eastern sites, to ≤ 1 coral tile− 1 at western sites. One aspect of seawater temperature - the daily range - differed among sites and was greater at western compared to eastern sites, and while it was related inversely to recruitment over one of the sampling periods, it was equivocal as a physical process affecting recruitment. Instead, our results are consistent with biophysical coupling involving patch depletion and downstream filtering, whereby patches of coral larvae are delivered to the south shore of St. John and depleted of larvae through settlement as the water progresses westward.  相似文献   

7.
Skeletal eroding band (SEB), which manifests as dense aggregations of the ciliate Halofolliculina corallasia, was the first coral disease described from the Indo-Pacific. Little is known about its etiology or impact. This study describes the distribution, prevalence and host range of SEB on a 500 km extent of the Great Barrier Reef (GBR), together with in situ rates of progression and infection following experimental injury. SEB occurred on 90–100% of reefs surveyed (n=18) in each of 3 years, demonstrating that SEB is widely distributed and persistent. SEB had the highest prevalence of any disease, affecting approximately 2% of 283,486 scleractinians and hydrocorals surveyed. Its host range was large, affecting 12 families and at least 82 scleractinian species, as well as the hydrocoral, Millepora. Corals in the families Pocilloporidae and Acroporidae were most susceptible, the former being up to five times more susceptible than other families. Progressive tissue loss was recorded on 95% of Acropora muricata colonies monitored (n = 18), with rates of SEB progression averaging ∼2 mm/day. Injury experiments demonstrated that H. corallasia, the putative pathogen of SEB, readily colonised recently exposed coral skeleton in the absence of a vector, but did not colonise intact coral tissue. Invading ciliates failed to form band-like aggregations associated with progressive tissue loss on any of three coral species tested experimentally, suggesting that, while H. corallasia readily colonises recently exposed coral skeleton, it may not be sufficient in itself to cause tissue mortality. Interactions with additional agents or factors, increasing ciliate virulence or lowering disease resistance of coral hosts may be required before halofolliculinid infections become associated with tissue loss.  相似文献   

8.
The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985–2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.  相似文献   

9.
Sedimentation and overfishing are important local stressors on coral reefs that can independently result in declines in coral recruitment and shifts to algal-dominated states. However, the role of herbivory in driving recovery across environmental gradients is often unclear. Here we investigate early successional benthic communities and coral recruitment across a sediment gradient in Palau, Micronesia over a 12-month period. Total sedimentation rates measured by ‘TurfPods’ varied from 0.03 ± 0.1 SE mg cm−2 d−1 at offshore sites to 1.32 ± 0.2 mg cm−2 d−1 at inshore sites. To assess benthic succession, three-dimensional settlement tiles were deployed at sites with experimental cages used to exclude tile access to larger herbivorous fish. Benthic assemblages exhibited rapid transitions across the sediment gradient within three months of deployment. At low levels of sedimentation (less than 0.6 mg cm−2 d−1), herbivory resulted in communities dominated by coral recruitment inducers (short turf algae and crustose coralline algae), whereas exclusion of herbivores resulted in the overgrowth of coral inhibitors (encrusting and upright foliose macroalgae). An ‘inducer threshold’ was found under increasing levels of sedimentation (greater than 0.6 mg cm−2 d−1), with coral inducers having limited to no presence in communities, and herbivore access to tiles resulted in sediment-laden turf algal assemblages, while exclusion of herbivores resulted in invertebrates (sponges, ascidians) and terrestrial sediment accumulation. A ‘coral recruitment threshold’ was found at 0.8 mg cm−2 d−1, below which net coral recruitment was reduced by 50% in the absence of herbivores, while recruitment was minimal above the threshold. Our results highlight nonlinear trajectories of benthic succession across sediment gradients and identify strong interactions between sediment and herbivory that have cascading effects on coral recruitment. Local management strategies that aim to reduce sedimentation and turbidity and manage herbivore fisheries can have measurable effects on benthic community succession and coral recruitment, enhancing reef resilience and driving coral recovery.  相似文献   

10.
Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.  相似文献   

11.
One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15–30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m—among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.  相似文献   

12.
Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups. In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access), abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae, Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological and structural stability of reefs.  相似文献   

13.

Background

Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia.

Methodology

Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families.

Principal Findings/Conclusions

There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia.  相似文献   

14.
A novel method for the observation of recruitment of fluorescent taxa was developed combining fluorescence census techniques with conventional microscopic examination. The new technique was used to observe coral recruitment on natural limestone plates over a period of 4 months on Meras reef, North Sulawesi, Indonesia. During this period, fluorescence photos were taken of each plate on a weekly basis. This allowed for the detailed observation of fluorescent coral recruitment in-situ. After specific time periods, the plates were sampled and the detected recruits were categorized to family level using their skeletal structure. The fluorescence census technique detected 97.6% of all coral recruits bigger than one millimetre in diameter. The diameter measurements of the recruit's skeletons were used to estimate growth rates at family level. Using the photo series method, the time of settlement of fluorescent recruits on the plates was determined. The results showed roughly linear diameter growth of recruits in the first two months. Acroporidae-polyps were 1.14 mm in diameter when they settled and grew at rate of approximately 0.18 mm in diameter per week. Pocilloporidae-polyps settled at approximately 1.14 mm and showed a growth rate of approximately 0.23 mm in diameter per week. Recruits of three families were observed in detail over time on the artificial plates using this method. While recruitment was fairly continuous, an increase in pocilloporid recruits was observed during the month of September. Similar increases were observed for acroporid recruits during the middle of November and the second quarter of December. This method identifies the limits of detection for the fluorescence census technique used and represents a useful method for the temporal fine scale observation of recruitment in situ.  相似文献   

15.
Artificial reefs are increasingly being promoted as a means to mitigate impacts from human activities in coastal urban areas. Coastal defense structures such as breakwaters are becoming recognized as large-scale artificial reefs that support abundant and diverse marine communities and play important roles in coastal ecology and management. However, there is limited understanding of how substrate materials used to construct artificial reefs or breakwaters can influence the development of habitat-forming benthic organisms. To assess the influence of substrata on coral recruitment and overall benthic community development, we deployed standard-size tiles of materials used in the construction of breakwaters and artificial reefs (concrete, gabbro, granite, and sandstone), along with terra-cotta for comparative purposes, at two breakwaters (DDD, PRT) and two natural reef sites (NR1, NR2) in Dubai, United Arab Emirates, for one year. Kruskal-Wallis ANOVA with post-hoc Mann-Whitney U-tests were used to examine differences in coral recruitment among sites and materials. Coral recruitment was highest at the DDD (4.9 ± 0.5 recruits 100 cm− 2), while recruitment was low and did not differ among other sites (PRT: 0.1 ± 0.04, NR1:0.3 ± 0.1, NR2: 0.1 ± 0.03 recruits 100 cm− 2). There were significant differences in coral recruitment among materials at DDD, where gabbro had higher recruit densities than concrete and sandstone; sandstone also contained less coral recruits than terra-cotta. Variability associated with low coral recruit densities precluded significant differences among materials at other sites. Overall benthic community structure differed more as a result of differences among sites than among substrate materials. Higher community dissimilarity was observed among sites than among material in SIMPER analysis, and significant differences were only observed among sites in ANOSIM. Univariate comparison of the benthos correlated with community differences in NMS ordination also showed significant differences among sites but not material. Overall, these results indicate that site-specific differences in recruitment patterns are more important in determining early benthic community structure and coral recruitment than are differences among substrate material. However, where coral recruitment is high, these results suggest that gabbro should be used preferentially over concrete or sandstone where it is feasible, but that granite may be a suitable alternative where it is the dominant stone. Coral recruitment on terra-cotta was comparable to all materials but sandstone, supporting its continued use in recruitment studies. These results also indicate that using stone amenable to coral recruitment is unlikely to influence the wider benthic community.  相似文献   

16.
New data on the species composition and distribution of reef-building corals on some reefs of the Seychelles Islands are presented. The study revealed 236 species belonging to 68 genera, which exceeds the well-known values of scleractinian species composition in this region by almost two times. Representatives of the families Acroporidae, Poritidae, and Faviidae dominated. Settlements of the blue coral Heliopora coerulea and the hydroid Millepora dichotoma were fairly numerous and in aggregate covered up to 40% of the substratum. In its species composition, the coral fauna of the Seychelles reefs makes a single unit with the Indo-Pacific tropical fauna.  相似文献   

17.
The size structure of coral populations is influenced by biotic and physical factors, as well as species-specific demographic rates (recruitment, colony growth, mortality). Coral reefs surrounding Moorea Island are characterized by strong environmental gradients at small spatial scales, and therefore, we expected that the size structure of coral populations would vary greatly at this scale. This study aimed at determining the degree of spatial heterogeneity in the population size structure of two coral taxa, Pocillopora meandrina and massive Porites spp., among depths (6, 12, and 18 m) and among locations (Vaipahu, Tiahura and Haapiti) representing different exposure to hydrodynamic forces. Our results clearly underlined the strong heterogeneity in the size structure of both P. meandrina and massive Porites spp., with marked variation among depths and among locations. However, the lack of any consistent and regular trends in the size structure along depths or among locations, and the lack of correlation between size structure and mean recruitment rates may suggest that other factors (e.g., stochastic life history processes, biotic interactions, and disturbances) further modify the structure of coral populations. We found that the size structure of P. meandrina was fundamentally different to that of massive Porites spp., reflecting the importance of life history characteristics in population dynamics. Handling editor: I. Nagelkerken  相似文献   

18.
This is the first report of a ciliate of the genus Halofolliculina infecting hard coral species of six families (Acroporidae, Agaricidae, Astrocoeniidae, Faviidae, Meandrinidae and Poritidae) and milleporids in the Caribbean. Surveys conducted during 2004–2005 in Venezuela, Panama and México confirmed that this ciliate affects up to 25 scleractinian species. The prevalence of this ciliate at the coral community level was variable across sites, being most commonly found at Los Roques, Venezuela, and at Bocas del Toro, Panama (prevalence 0.2–2.5%), but rarely observed in the Mexican Caribbean. Ciliates were more prevalent within populations of acroporids (Acropora palmata, Acropora cervicornis and Acropora prolifera) in Los Roques. Recent observations also corroborate the presence of these ciliates in Curacao and Puerto Rico. Our observations indicate that ciliates affecting corals have a wider distribution than previously thought, and are no longer exclusively found in the Indo-Pacific and Red Sea.  相似文献   

19.
Factors affecting coral recruitment are critical in influencing the scope and rate of reef recovery after disturbance. In December 2012, super-typhoon Bopha caused immense damage to the eastern reefs of Palau, resulting in near complete loss of coral cover. Within weeks following the typhoon, an ephemeral monospecific bloom of the foliose red macroalga Liagora (up to 40 % cover in February 2013) was recorded at impacted reefs with moderate wave exposure. Conversely, impacted and un-impacted reefs in areas of low wave exposure remained Liagora free. To quantify the effect of this ephemeral macroalgal bloom on coral recruitment, we installed settlement tiles during the major spawning period (March–April 2013) at forereefs with and without Liagora. Reefs (n = 3) with Liagora (13–24 % cover in April) experienced an almost complete failure of settlement, with only two individual corals recorded on settlement tiles (n = 90). This settlement failure was unexpected, as tiles were situated adjacent to, and not within Liagora canopies. In contrast, settlement was significantly higher on reefs that lacked macroalgae (n = 3), ranging from an average of 0.5–2.5 and 2.7–18.9 individuals 25 cm?2 per top- and under-sided tile, respectively. Reefs with and without Liagora were in close proximity (≤8 km), and hydrodynamic models predicted that larval supply did not limit coral settlement among sites. While some differences in the community composition on the tiles were observed among sites, settlement substrate availability also did not limit coral settlement. Generalised linear mixed effects models indicated that while no settlement substrate explained more than 10 % of the variability in coral settlement, coral cover positively accounted for 26 %, and the cover of Liagora on reefs negatively accounted for more than 50 % of the observed variation. Combined, our results indicate that the typhoon induced ephemeral macroalgal bloom resulted in a reef-scale failure of coral settlement.  相似文献   

20.
Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: ‘coral-dominated’), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (‘rubble-dominated’), and some reefs have high cover of macroalgae (‘macroalgal-dominated’). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile?1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile?1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m?2), compared to coral-dominated reefs (16.8 ± 2.4 m?2) and rubble-dominated reefs (33.1 ± 7.3 m?2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This study identified bottlenecks to recovery of coral assemblages that varied depending on post-disturbance habitat condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号