首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate kinase catalyses the equilibrium 2ADP = ATP + AMP. There are two isoenzymes of adenylate kinase in bovine ventricular tissue, one cytoplasmic, the other mitochondrial. Mitochondrial subfractionation locates this isoenzyme between the mitochondrial membranes with fatty acid-CoA ligase. The cytoplasmic and mitochondrial isoenzymes are distributed in ratio 3:2, and both forms were purified to homogeneity. They differ principally by charge, Km values for ATP, ADP and AMP, pH-stability and -activity profiles, and susceptibility to the inhibitor adenosine pentaphosphoadenosine. The forward and reverse reactions show similar energies of activation for the cytoplasmic enzyme, but differ for the mitochondrial enzyme. The molecular weights are indistinguishable. An integrated mechanism is formulated whereby one isoenzyme suppresses the activation of fatty acid and the other enhances carbohydrate utilization in hypoxic myocytes.  相似文献   

2.
The characteristics of the cyclic AMP-dependent protein kinase isoenzyme response to calcitonin stimulation have been studied in two human breast cancer cell lines, T47D and MCF 7. Both cell lines possess calcitonin receptors, a calcitonin-responsive adenylate cyclase and the two isoenzymes of the cyclic AMP-dependent protein kinase, types I and II. The adenylate cyclase also responds to prostaglandin E2. Acute activation of the cyclic AMP-dependent protein kinase isoenzymes was determined by using a modification of a multiple small anion exchange column method [Livesey, Kemp, Re, Partridge & Martin (1982) J. Biol. Chem. 257, 14983-14987]. Control experiments showed that post-extraction activation did not influence the data. Calcitonin caused a rapid, selective activation of isoenzyme II in the T 47D cells with half-maximal response at 10(-10)M, and persisting for at least 24h. In MCF 7 cells calcitonin also caused a highly selective activation of isoenzyme II with half-maximal response at 5 X 10(-11) M, but the response was transient with a return to basal isoenzyme activity by 4-6 h. At this time further addition of calcitonin did not restimulate the cyclic AMP-dependent kinase activity. In neither cell line did calcitonin treatment result in activation of isoenzyme I. Prostaglandin E2, on the other hand, the only significant alternative agonist of adenylate cyclase in T 47D cells, activated isoenzymes I and II to an equal extent in these cells, illustrating that two hormones activating adenylate cyclase in the one cell type might exert different effects by their selective actions upon protein kinase isoenzymes.  相似文献   

3.
An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.  相似文献   

4.
Hydrogenosomal ATP:AMP phosphotransferase of Trichomonas vaginalis   总被引:2,自引:0,他引:2  
1. ATP:AMP phosphotransferase (adenylate kinase) is present in Trichomonas vaginalis, primarily with hydrogenosomal localization. 2. Adenylate kinase has been purified from hydrogenosome-enriched fractions by solubilization with Triton X-100 and KCl followed by affinity chromatography and gel filtration. 3. The enzyme has a Mr = 28,000, a broad pH optimum of pH 7-9, requirement for Mg2+ and specificity for adenine and deoxyadenine nucleotides. 4. The activity is competetively inhibited by P1,P5-di(adenosine-5') pentaphosphate (Ki 200 nM) and reversibly inactivated by 5,5'-dithiobis-(2-nitrobenzoate). 5. Catalytic properties of this enzyme are similar to those of enzymes from other organisms. Other properties indicate its uniqueness, however, since its molecular mass and Ki for P1,P5-di(adenosine-5'-)-pentaphosphate bring it closer to the mitochrondrial isoenzyme, while it shares a requirement for reduced thiol groups with the cytosolic isoenzyme.  相似文献   

5.
Summary The phenotype AK 3.3 in the isoenzyme system of human adenylate kinase has been found in two members of the Wayampi population of French Guiana.  相似文献   

6.
Pea (Pisumsativum) leaf cytoplasmic and chloroplast 3-P-glyceric acid kinases are controlled by adenylate energy charge. In the light, when energy charge is high, the chloroplast enzyme will be stimulated in the direction of the Calvin cycle, and the glycolytic activity of the cytoplasmic kinase will be inhibited. In the dark when energy charge is lower, both enzymes may participate in the generation of ATP.  相似文献   

7.
Under the influence of 1 hour myocardial ischemia activity of rabbit heart mitochondrial isoenzyme AK2 increased by 40%, but the activity of matrix isoenzyme AK3 decreased by 77%. No changes were found both in total adenylate kinase activity, and cytosolic isoenzyme AK1. The reasons of these alterations are not sufficiently clear. Apparently, they are related with functioning conditions of these isoenzymes in ischemic tissue.  相似文献   

8.
1. Human adenylate kinase (isoenzyme AK-1-1) from skeletal muscle is a single polypeptide chain of 194 amino-acid residues with an acetylmethionine at the N-terminus and a lysine at the C-terminus. 2. The primary structure of the enzyme was determined: Ac-Met-Glu-Glu-Lys-Leu-Lys-Lys-Thr-Lys-Ile-Ile-Phe-Val-Val-Gly-Gly-Pro-Gly-Ser-Gly-Lys-Gly-Thr-Gln-Cys-Glu-Lys-Ile-Val-Gln-Lys-Tyr-Gly-Tyr-Thr-His-Leu-Ser-Thr-Gly-Asp-Leu-Leu-Arg-Ser-Glu-Val-Ser-Ser-Gly-Ser-Ala-Arg-Gly-Lys-Lys-Leu-Ser-Glu-Ile-Met-Glu-Lys-Gly-Gln-Leu-Val-Pro-Leu-Glu-Thr-Val-Leu-Asp-Met-Leu-Arg-Asp-Ala-Met-Val-Ala-Lys-Val-Asn-Thr-Ser-Lys-Gly-Phe-Leu-Ile-Asp-Gly-Tyr-Pro-Arg-Glu-Val-Gln-Gln-Gly-Glu-Glu-Phe-Glu-Arg-Arg-Ile-Gly-Gln-Pro-Thr-Leu-Leu-Leu-Tyr-Val-Asp-Ala-Gly-Pro-Glu-Thr-Met-Thr-Arg-Arg-Leu-Leu-Lys-Arg-Gly-Glu-Thr-Ser-Gly-Arg-Val-Asp-Asn-Glu-Glu-Thr-Ile-Lys-Lys-Arg-Leu-Glu-Thr-Tyr-Tyr-Lys-Ala-Thr-Glu-Pro-Val-Ile-Ala-Phe-Tyr-Glu-Lys-Arg-Gly-Ile-Val-Arg-Lys-Val-Asn-Ala-Glu-Gly-Ser-Val-Asp-Glu-Val-Phe-Ser-Gln-Val-Cys-Thr-His-Leu-Asp-Ala-Leu-Lys. 3. When the primary structure of the human enzyme was fitted to the electron density map of porcine adenylate kinase, all nine amino acids which are different in the homologous enzymes from pig and man were located on the surface of the molecule. 4. Precession photographs of crystalline human and of crystalline porcine adenylate kinase corroborated the result that the polypeptide chains of the two enzymes are folded in a closely related manner. 5. The structure of human adenylate kinase incorporates the so-called nucleotide-binding domain which is present in a wide variety of proteins in nature. Some implications of this phenomenom for the molecular biology and the molecular pharmacology of man are discussed.  相似文献   

9.
The mathematical model of the compartmentalized energy transfer system in cardiac myocytes presented includes mitochondrial synthesis of ATP by ATP synthase, phosphocreatine production in the coupled mitochondrial creatine kinase reaction, the myofibrillar and cytoplasmic creatine kinase reactions, ATP utilization by actomyosin ATPase during the contraction cycle, and diffusional exchange of metabolites between different compartments. The model was used to calculate the changes in metabolite profiles during the cardiac cycle, metabolite and energy fluxes in different cellular compartments at high workload (corresponding to the rate of oxygen consumption of 46 mu atoms of O.(g wet mass)-1.min-1) under varying conditions of restricted ADP diffusion across mitochondrial outer membrane and creatine kinase isoenzyme "switchoff." In the complete system, restricted diffusion of ADP across the outer mitochondrial membrane stabilizes phosphocreatine production in cardiac mitochondria and increases the role of the phosphocreatine shuttle in energy transport and respiration regulation. Selective inhibition of myoplasmic or mitochondrial creatine kinase (modeling the experiments with transgenic animals) results in "takeover" of their function by another, active creatine kinase isoenzyme. This mathematical modeling also shows that assumption of the creatine kinase equilibrium in the cell may only be a very rough approximation to the reality at increased workload. The mathematical model developed can be used as a basis for further quantitative analyses of energy fluxes in the cell and their regulation, particularly by adding modules for adenylate kinase, the glycolytic system, and other reactions of energy metabolism of the cell.  相似文献   

10.
Summary The phenotype AK 3-2 in the isoenzyme system of human adenylate kinase has been found in two members of a family in Berlin.  相似文献   

11.
Abstract: A bioluminescent assay based on the firefly luciferase reaction has been used for determination of creatine kinase activity in CSF. Activities as low as 0.1 U/L can be measured. The coefficient of variation at an activity level of 0.3–0.4 U/L was between 5 and 6%. The assay conditions optimized for serum specimens can be used for CSF. The adenylate kinase activity is almost completely inhibited, which simplifies the procedure. The creatine kinase (CK) isoenzyme distribution was obtained using the bioluminescent assay in combination with immunoinhibition or ion exchange chromatography. All specimens contained both MM and BB activity, but no MB was found. The study indicates that the bioluminescent assay is useful in the determination of CK isoenzymes in CSF. The clinical importance of the observed CK levels will be reported in a separate communication.  相似文献   

12.
A method for the purification of mitochondrial isoenzyme of sheep liver aspartate aminotransferase (EC 2.6.1.1) is described. The final preparation is homogeneous by ultracentrifuge analyses and polyacrylamide-gel electrophoresis and has a high specific activity (182 units/mg). The molecular weight determined by sedimentation equilibrium is 87,100 +/- 680. The amino acid composition is presented; it is similar to that of other mitochondrial isoenzymes, but with a higher content of tyrosine and threonine. Subforms have been detected. On isoelectric focusing a broad band was obtained, with pI 9.14. The properties of the mitochondrial aspartate aminotransferase are compared with those of the cytoplasmic isoenzyme. The Km for L-aspartate and 2-oxoglutarate for the cytoplasmic enzyme were 2.96 +/- 0.20 mM and 0.093 +/- 0.010 mM respectively; the corresponding values for the mitochondrial form were 0.40 +/- 0.12 mM and 0.98 +/- 0.14 mM. Cytoplasmic aspartate aminotransferase showed substrate inhibition by concentrations of 2-oxoglutarate above 0.25 mM in the presence of aspartate up to 2mM. The mitochondrial isoenzyme was not inhibited in this way. Pi at pH 7.4 inhibited cytoplasmic holoenzyme activity by up to about 60% and mitochondrial holoenzyme activity up to 40%. The apparent dissociation constants for pyridoxal 5'-phosphate were 0.23 micrometer (cytoplasmic) and 0.062 micrometer (mitochondrial) and for pyridoxamine 5'-phosphate they were 70 micrometer (cytoplasmic) and 40 micrometer (mitochondrial). Pi competitively inhibited coenzyme binding to the apoenzymes; the inhibition constants at 37 degree C were 32 micrometer for the cytoplasmic isoenzyme and 19.5 micrometer for the mitochondrial form.  相似文献   

13.
plsA mutants of Escherichia coli are temperature-sensitive strains which possess two enzymes of abnormal thermolability, sn-glycerol 3-phosphate acyltransferase and adenylate kinase. Phospholipid synthesis is inhibited after shift of plsA mutants to temperatures at the lower end of the nonpermissive temperature range. This inhibition is not due to inactivation of the adenylate kinase activity since nucleic acid (and hence adenosine 5'-triphosphate) synthesis is inhibited only slightly. These results show that in vivo inactivation of the sn-glycerol 3-phosphate acyltransferase can be observed under conditions which allow normal adenylate kinase function.  相似文献   

14.
On the basis of electrophoretic and enzyme inhibition studies it was postulated that an aberrant adenylate kinase occurs in muscle and serum of patients with Duchenne muscular dystrophy (Schirmer, R.H. and Thuma, E. (1972) Biochim. Biophys. Acta 268, 92-97; Hamada, M. et al. (1981) Biochim. Biophys. Acta 660, 227-237; Hamada et al. (1985) J. Biol. Chem. 260, 11595-11602). On the basis of the following results we conclude that Duchenne muscular dystrophy patients do not possess an unusual adenylate kinase isoenzyme. In muscle biopsies from five Duchenne patients, the electrophoretic mobility of adenylate kinase and the inhibition of the enzyme by P1, P5-di(adenosine-5')pentaphosphate (Ap5A) was normal. Because of the high SH-group content of the extracts from Duchenne muscle, high concentrations of Ellman's reagent were needed to inhibit adenylate kinase activity in these samples. In Duchenne plasma the adenylate kinase activity was elevated. Like in muscle specimens, the DTNB inhibition curves were shifted to higher reagent concentrations; this was due to a high SH-group content of Duchenne plasma when compared with normal plasma. With respect to inhibition by Ap5A and electrophoretic mobility, Duchenne adenylate kinase in Duchenne plasma behaved like normal muscle adenylate kinase in normal plasma. It was noted that normal muscle adenylate kinase changes its electrophoretic behaviour when mixed with normal or Duchenne plasma. This finding had been considered previously as evidence for the presence of an aberrant adenylate kinase in Duchenne plasma.  相似文献   

15.
We propose a mechanism for the cytoplasmic Ca++ oscillator which is thought to power shuttle streaming in strands of the slime-mold Physarum polycephalum. The mechanism uses a phosphorylation-dephosphorylation cycle of myosin light chain kinase. This kinase is bistable if the kinase phosphorylation chain, through adenylate cyclase and cAMP, is activated by calcium. Relaxation oscillations can then occur if calcium is exchanged between the cytoplasm and internal vacuoles known to exist in physarum. As contractile activity in physarum myosin is inhibited by calcium, this model can give calcium oscillations 180 degrees out of phase with actin filament tension as observed. Oscillations of ATP concentration are correctly predicted to be in phase with the tension, provided the actomyosin cycling rate is comparable with ATPase rates for phosphorylation of the myosin light chain and its kinase.  相似文献   

16.
It is demonstrated that the hepatic microsomal fraction contains significant adenylate-kinase activity. This explains a paradoxical ADP-stimulated Ca2+ uptake into microsomal vesicles which is inhibited when adenylate kinase is inhibited. The presence of adenylate kinase in the microsomal fraction helps to prevent sudden drops in ATP level, and thus has a stabilizing effect on the many ATP-dependent reactions carried out in this subcellular compartment.  相似文献   

17.
Creatine kinase isoenzymes from Torpedo californica electric organ, skeletal muscle, and brain were purified and characterized. Torpedo electric organ and skeletal muscle creatine kinase have identical apparent Mr, electrophoretic mobility, and cyanogen bromide fragments. The electrophoretic mobility of the Torpedo creatine kinase was anodal as compared to mammalian MM creatine kinase. No creatine kinase isoenzyme with an electrophoretic mobility similar to mammalian BB creatine kinase was seen in any of the Torpedo tissues examined. Hybridization studies demonstrate the Torpedo electric organ creatine kinase to be composed of identical subunits and capable of producing an enzymatically active heterodimer when combined with canine BB creatine kinase. Creatine kinase from sucrose gradient-purified Torpedo electric organ acetylcholine receptor-rich membranes has an electrophoretic mobility identical with the cytoplasmic isoenzyme and an apparent Mr identical with mammalian MM creatine kinase. Western blot analysis showed Torpedo electric organ skeletal muscle creatine kinase and acetylcholine receptor-enriched membrane creatine kinase reacted with antiserum specific for canine MM creatine kinase. NH2-terminal amino acid sequence determinations show considerable sequence homology between human MM, Torpedo electric organ, chicken MM, and porcine MM creatine kinase. The acetylcholine receptor-associated creatine kinase is, therefore, identical with the cytoplasmic form from the electric organ and is composed of M-subunits.  相似文献   

18.
Brain creatine kinase is principally of soluble cytoplasmic origin (anodal electrophoretic mobility). However, synaptosomal membranes and synaptic vesicles are enriched in an isoenzyme electrophoretically similar to muscle type creatine kinase (cathodal electrophoretic mobility), but which can be distinguished from muscle type by other means.  相似文献   

19.
Summary The effects of wheat straw and pressed sugar beet pulp on sulphur oxidation were determined in a loam soil amended with 1% (w/w) elemental sulphur. Wheat straw stimulated the oxidation of elemental sulphur over the first 2 to 3 weeks of the incubation period, resulting in an increase in LiCl-extractable sulphate. After 4 to 7 weeks incubation however, the only significant increase in soil sulphate followed the 1% straw addition, while at week 7 sulphate concentrations in the 0.25% and 5.0% straw amended soils were lower than the control. Pressed sugar beet pulp (1% w/w) initially stimulated the oxidation of elemental sulphur in the soil, but by weeks 3 to 7 of the incubation period rates of oxidation in pulp-amended soils were lower than the control. Towards the end of the incubation period however, sulphate concentrations in the amended soils exceeded the control values, significantly so by week 11. The concentration of thiosulphate and tetrathionate also increased in soils receiving sugar beet pulp. Nitrification was inhibited in soils in which sulphur oxidation was actively occurring. Although possible alternatives are mentioned, such inhibition appears to result from a decrease in soil pH brought about by the oxidation of elemental sulphur to sulphuric acid.  相似文献   

20.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane-spanning adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporter. ABC transporters and other nuclear and cytoplasmic ABC proteins have ATPase activity that is coupled to their biological function. Recent studies with CFTR and two nonmembrane-bound ABC proteins, the DNA repair enzyme Rad50 and a structural maintenance of chromosome (SMC) protein, challenge the model that the function of all ABC proteins depends solely on their associated ATPase activity. Patch clamp studies indicated that in the presence of physiologically relevant concentrations of adenosine 5′-monophosphate (AMP), CFTR Cl channel function is coupled to adenylate kinase activity (ATP+AMP ⇆ 2 ADP). Work with Rad50 and SMC showed that these enzymes catalyze both ATPase and adenylate kinase reactions. However, despite the supportive electrophysiological results with CFTR, there are no biochemical data demonstrating intrinsic adenylate kinase activity of a membrane-bound ABC transporter. We developed a biochemical assay for adenylate kinase activity, in which the radioactive γ-phosphate of a nucleotide triphosphate could transfer to a photoactivatable AMP analog. UV irradiation could then trap the 32P on the adenylate kinase. With this assay, we discovered phosphoryl group transfer that labeled CFTR, thereby demonstrating its adenylate kinase activity. Our results also suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for adenylate kinase activity. These biochemical data complement earlier biophysical studies of CFTR and indicate that the ABC transporter CFTR can function as an adenylate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号