首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we compared the properties of a serine endopeptidase H1 (SH1) and a serine thiol endopeptidase (STH2) purified from human urine by DEAE-cellulose followed by a Bio Gel A0.5 m or Sepharose Mercurial chromatographs. These enzymes differ in their action upon different hormone peptides. We used fluorogenic substrates to further characterize the enzyme. The substrate specificity of urinary SH1 was studied using different internally quenched fluorescent peptides, and AbzFGQEDDnp was hydrolyzed by SH1. Other enzymes present in urine, such as serine endopeptidase H2, prolyl endopeptidase, neutral endopeptidase like and angiotensin-I converting enzyme, were not able to hydrolyze this substrate. SH1 is 100% inhibited by PMSF and resistant to EDTA, OPA, thiorphan, E64, pOHMB and phosphoramidon. Endopeptidase STH2 is completely inhibited by PMSF, E64 and pOHMB. Enzyme SH1 hydrolyzes the peptide bound F5-S6 at bradykinin (BK: RPPGFSPFR) molecule and R-Q at AbzBKQEDDnp. When studying enzyme STH2, the cleavage sites determined to the related substrates were F5-S6 using BK as substrate and F-R using AbzBKQEDDnp. The kilometers value obtained for AbzBKQEDDnp and AbzFGQEDDnp were 1.18 and 0.007 uM, respectively. Kininases from kidney and urine can hydrolyze peptide bounds from components of the kallikrein-kinin system, the angiotensin-renin system and the neuropeptides system, straight contributing in kidney homeostasis. SH1 was located at the distal tubule [Casarini et al., 1999a, Am. J. Physiol. 277, F66] and can have an important function in the control of kinin found in this portion, since is known that all components of the kallikrein-kinin system were found in this portion. The physiological role of SHT2 could be related to the inter-relation between the kallikrein-kinin system and neuropeptides in the control of the water electrolyte balance [Braz. J. Med. Biol. Res. 25 (3) (1992) 219].  相似文献   

2.
An extensive screening among microorganisms for the presence of post-proline-specific endopeptidase activity was performed. This activity was found among ordinary bacteria from soil samples but not among fungi and actinomycetes. This result is in contrast to the previous notion that this activity is confined to the genus Flavobacterium. A proline endopeptidase was isolated from a Xanthomonas sp. and characterized with respect to physicochemical and enzymatic properties. The enzyme is composed of a single peptide chain with a molecular weight of 75,000. The isoelectric point is 6.2. It is inhibited by diisopropylfluorophosphate and may therefore be classified as a serine endopeptidase. The activity profile is bell shaped with an optimum at pH 7.5. By using synthetic peptide substrates and intramolecular fluorescence quenching it was possible to study the influence of substrate structure on the rate of hydrolysis. The enzyme specifically hydrolyzed Pro-X peptide bonds. With Glu at position X, low rates of hydrolysis were observed; otherwise the enzyme exhibited little preference for particular amino acid residues at position X. A similar substrate preference was observed with respect to the amino acid residue preceding the prolyl residue in the substrate. The enzyme required a minimum of two amino acid residues toward the N terminus from the scissile bond, but further elongation of the peptide chain by up to six amino acid residues caused only a threefold increase in the rate of hydrolysis. Attempts to cleave at the prolyl residues in oxidized RNase failed, indicating that the enzyme does not hydrolyze long peptides, a peculiar property it shares with other proline-specific endopeptidases.  相似文献   

3.
Porcine muscle prolyl endopeptidase and its endogenous substrates   总被引:2,自引:0,他引:2  
Prolyl endopeptidase [EC 3.4.21.26] was purified 4,675-fold with a yield of 26.3% from porcine muscle. The purified enzyme was shown to be very similar to the liver enzyme with respect to its molecular weight (72,000-74,000), antigenicity, substrate specificity, and susceptibility to protease inhibitors. Among several bioactive peptides, angiotensins I, II, and III had the lowest Km of 0.6 to 3 microM with the lowest kcat of 0.19 to 0.85 s-1, while thyrotropin-releasing hormone had the highest Km of 98 microM with the highest kcat of 14.4 s-1. Interestingly, mastoparan was hydrolyzed at alanyl bonds, but insulin was only slightly hydrolyzed and glucagon was not hydrolyzed although the latter two peptides contain prolyl and/or alanyl bonds. Muscle prolyl endopeptidase failed to hydrolyze proteins with high molecular weight such as albumin, immunoglobulin G, elastin, collagen, and muscle soluble and insoluble proteins. However, 8 of 14 peptides with molecular weights lower than 3,000, which were isolated from muscle extract, were digested by this enzyme, and they were proved to contain prolyl and/or alanyl residues in their molecules. The data suggest that they are probable endogenous substrates for prolyl endopeptidase.  相似文献   

4.
Tryptic peptides from hemoglobin (Hb) beta-chains were used as model substrates for limited proteolysis by prolyl endopeptidase (EC 3.4.21.26) from porcine muscle. From the physicochemical and enzymatic properties of prolyl endopeptidase the conditions for routine digestion were established as follows: the molar ratio of enzyme to substrate was 1 to 100, and the reaction was carried out in sodium phosphate buffer (pH 6.4) at 37 degrees C for 4 h. Under these conditions the peptide bonds on the carboxyl terminal sides of proline and alanine residues in the tryptic peptides from Hb beta-chains (with Mr values of less than 2100) were hydrolyzed by the enzyme with the exception of the amino terminal alanyl bond and aminoacyl alanyl bond. In addition, one of five seryl bonds was cleaved by the enzyme. However, the Hb beta-chain itself, Mr 16,600, and its two CNBr-peptides with Mr 10,200 and Mr 6400, respectively, were not hydrolyzed. Under the same conditions a prolyl bond in oxidized B-chains of insulin, Mr 3400, was partially digested, and an alanyl bond was not hydrolyzed. The data indicate that the prolyl endopeptidase is useful for the limited proteolysis of peptides with relative masses of less than 3000 at both prolyl and alanyl bonds.  相似文献   

5.
Enzymatic cleavage of some peptide hormones, neurotransmitters and neuromodulators could be implicated in the regulation of extra- and intracellular fluid volume and osmolality. Prolyl endopeptidase is known to hydrolyze several peptides, which act on hydromineral balance, such as angiotensins, bradykinin, vasopressin, oxytocin, thyrotropin-releasing hormone, neurotensin and opioids. In this work, we analyzed the effects of certain volume and/or osmotic changes in the activity of the soluble and membrane-bound prolyl endopeptidase in several brain areas, heart, lungs, kidney and adrenal and pituitary glands of the rat. Soluble prolyl endopeptidase activity was higher in the renal cortex of the chronic salt-loaded rats than in the control rats. In the water-deprived and polyethylene glycol-treated rats, heart particulate prolyl endopeptidase was lower than in the control rats. Particulate prolyl endopeptidase was also lower in the adrenal gland of the acute salt-loaded rats and in the brain cortex of the water-loaded rats than in the control rats. Data suggest that tissue-dependent peptide hydrolysis evoked by prolyl endopeptidase activity is involved in the water-electrolyte homeostasis.  相似文献   

6.
We examined the substrate specificity of the carboxydipeptidase activity of neprilysin (NEP) using fluorescence resonance energy transfer (FRET) peptides containing ortho-aminobenzoyl (Abz) and 2,4-dinitrophenyl (Dnp) as a donor/acceptor pair. Two peptide series with general sequences Abz-RXFK(Dnp)-OH and Abz-XRFK(Dnp)-OH (X denotes the position of the altered amino acid) were synthesized to study P1 (cleavage at the X-F bond) and P2 (cleavage at R-F bond) specificity, respectively. In these peptides a Phe residue was fixed in P1' to fulfill the well-known NEP S1' site requirement for a hydrophobic amino acid. In addition, we explored NEP capability to hydrolyze bradykinin (RPPGFSPFR) and its fluorescent derivative Abz-RPPGFSPFRQ-EDDnp (EDDnp=2,4-dinitrophenyl ethylenediamine). The enzyme acts upon bradykinin mainly as a carboxydipeptidase, preferentially cleaving Pro-Phe over the Gly-Phe bond in a 9:1 ratio, whereas Abz-RPPGFSPFRQ-EDDnp was hydrolyzed at the same bonds but at an inverted proportion of 1:9. The results show very efficient interaction of the substrates' C-terminal free carboxyl group with site S2' of NEP, confirming the enzyme's preference to act as carboxydipeptidase at substrates with a free carboxyl-terminus. Using data gathered from our study, we developed sensitive and selective NEP substrates that permit continuous measurement of the enzyme activity, even in crude tissue extracts.  相似文献   

7.
The activity of prolyl endopeptidase in homogenates of mouse tissues was determined 30 min after intraperitoneal injection of N-benzyloxycarbonyl-prolyl-prolinal (1.25 mg/kg), a potent transition state analog inhibitor (K1 = 14 nM) of prolyl endopeptidase (EC 3.4.21.26). A more than 85% decrease of enzyme activity was obtained in all tissues. The in vivo degradation of potential prolyl endopeptidase substrates was studied by following the release of sulfamethoxazole from N-benzyloxycarbonylglycyl-prolyl-sulfamethoxazole, a model synthetic substrate of the enzyme. When this substrate was given intraperitoneally, its enzymatic degradation was blocked after administration of the inhibitor in a dose- and time-dependent manner, indicating inhibition of the enzyme in vivo. Of interest is the long duration of the inhibition. After a relatively low inhibitor dose (5 mg/kg) significant inhibition was seen in most tissues even after 6 h. The brain was particularly sensitive to the effect of the inhibitor. Since prolyl endopeptidase readily degrades many proline-containing neuropeptides, the inhibitor should be of value in studies on the role of the enzyme in neuropeptide metabolism.  相似文献   

8.
Keane FM  Nadvi NA  Yao TW  Gorrell MD 《The FEBS journal》2011,278(8):1316-1332
Fibroblast activation protein-α (FAP) is a cell surface-expressed and soluble enzyme of the prolyl oligopeptidase family, which includes dipeptidyl peptidase 4 (DPP4). FAP is not generally expressed in normal adult tissues, but is found at high levels in activated myofibroblasts and hepatic stellate cells in fibrosis and in stromal fibroblasts of epithelial tumours. FAP possesses a rare catalytic activity, hydrolysis of the post-proline bond two or more residues from the N-terminus of target substrates. α(2)-antiplasmin is an important physiological substrate of FAP endopeptidase activity. This study reports the first natural substrates of FAP dipeptidyl peptidase activity. Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY were the most efficiently hydrolysed substrates and the first hormone substrates of FAP to be identified. In addition, FAP slowly hydrolysed other hormone peptides, such as the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are efficient DPP4 substrates. FAP showed negligible or no hydrolysis of eight chemokines that are readily hydrolysed by DPP4. This novel identification of FAP substrates furthers our understanding of this unique protease by indicating potential roles in cardiac function and neurobiology.  相似文献   

9.
An endopeptidase isolated from bovine kidney displays high affinity and selectivity for the Ser-Phe bond located in the C-terminal region of atrial peptides. Enzymatic activity converts APIII and APII to the less active peptide API. This peptidase is inhibited by both metal chelators and sulfhydryl-reactive agents, suggesting both a tightly bound metal and a cysteine residue are important for enzymatic activity. This enzyme may be important for the processing and/or degradation of atrial peptides.  相似文献   

10.
Porcine spleen cathepsin B is an exopeptidase   总被引:3,自引:0,他引:3  
The major cathepsin B isozyme CB-I purified from porcine spleens was studied for its specificity against various peptide and denatured protein substrates. The enzyme degraded all the peptide substrates by an exopeptidase activity. The substrates were degraded mainly by a dipeptidyl carboxypeptidase activity of the enzyme except for angiotensin I, from which a COOH-terminal leucine residue was released. The enzyme failed to hydrolyze peptides having a proline or cysteic acid in the COOH-terminal, penultimate, and antepenultimate positions. Reduced and carboxymethylated soybean trypsin inhibitor was degraded by the same dipeptidyl carboxypeptidase action of cathepsin B. No significant endopeptidase activity was observed. These results do not support the general assumption that cathepsin B has both endo- and exopeptidase activities, neither do these observations support the postulation that cathepsin B might be involved in the in vivo proteolytic processing of protein precursors. We propose that the biological role of this enzyme is mainly the degradation of tissue proteins in lysosomes.  相似文献   

11.
The subcellular localization of the bradykinin-inactivating activity was studied using guinea-pig neutrophils and the following results were obtained. The bradykinin-inactivating activities were found to be present in the cytosol and membrane fractions but not in the granular and nuclear fractions. The bradykinin-inactivating activity of the cytosol fraction was inhibited by N-carbobenzoxy-Gly-Pro, an inhibitor of prolyl endopeptidase, whereas that of the membrane fraction was inhibited by bestatin, an inhibitor of aminopeptidase. Prolyl endopeptidase and aminopeptidase activities were located predominantly in the cytosol and membrane fractions, respectively, and their activities were inhibited by their respective inhibitors. Prolyl endopeptidase and aminopeptidase activities measured with synthetic substrates were competitively inhibited by bradykinin, suggesting that bradykinin is a possible substrate for prolyl endopeptidase and aminopeptidase. Intact neutrophils inactivated bradykinin rapidly. However, when neutrophils were modified chemically by diazotized sulfanilic acid, a poorly permeant reagent which inactivates ecto-enzymes selectively, both the bradykinin-inactivating activity and aminopeptidase activity of neutrophils decreased significantly without any inhibition of cytosol prolyl endopeptidase. The possibility that aminopeptidase, an ecto-enzyme, would be responsible for the inactivation of bradykinin by intact neutrophils was deduced from the results above, although both cytosol prolyl endopeptidase and membrane aminopeptidase could inactivate bradykinin.  相似文献   

12.
A metallo-endopeptidase, which appears to be an integral membrane protein of rat kidney, was purified to homogeneity by a series of standard chromatographic procedures. This enzyme significantly hydrolyzed human parathyroid hormone [hPTH(1-84)] and a synthetic substrate Suc-Leu-Leu-Val-Tyr-Mec (Suc = succinyl, Mec = 4-methyl-coumarinyl-7-amide). The purified enzyme had apparent molecular masses of 250 kDa on gel filtration, and 88 kDa and 245 kDa on sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing and non-reducing conditions, respectively. Its pH optimum for activity was 8.0-8.5 and its isoelectric point was pH 4.9. Its activity was inhibited by EDTA, EGTA and o-phenanthroline, but not by phosphoramidon. The metal-depleted enzyme was reactivated by the addition of metal ions. The enzyme was also inhibited by chymostatin and eglin C, and by thiol compounds. Of the synthetic substrates examined, the enzyme hydrolyzed only Suc-Leu-Leu-Val-Tyr-Mec, one of the synthetic substrates for alpha-chymotrypsin. It did not hydrolyze synthetic substrates with less than four amino acid residues with tyrosine in the P1 position. The enzyme hydrolyzed hPTH and reduced hen egg lysozyme but did not hydrolyze azocasein or [3H]methyl-casein. NH2-terminal amino acid sequence analyses of the degradation products of hPTH(1-84) and reduced hen egg lysozyme by the purified enzyme revealed that the enzyme preferentially cleaved these peptides at peptide bonds flanked by hydrophilic amino acid residues. Amino acid analyses showed that the main degradation products of PTH were hPTH(17-29), hPTH(30-38) and hPTH(74-84). The ability of the enzyme to hydrolyze peptide bonds flanked by hydrophilic amino acid residues and its inability to degrade azocasein distinguish it from several other kidney endopeptidases reported, such as endopeptidase 24.11 and meprin.  相似文献   

13.
Protease activities with specificity toward synthetic substrates, Suc-Gly-Pro-Leu-Gly-Pro-MCA for prolyl endopeptidase or collagenase-like peptidase, and Suc-Ala-Ala-Pro-Phe-MCA for chymotrypsin were identified in the detergent-soluble fraction of herring spermatozoa. The enzyme activities increased in the presence of herring sperm-activating protein (HSAP). Among them a prolyl endopeptidase [EC. 3. 4. 21. 26] was purified to near homogeneity from herring testis. The molecular mass of the enzyme was 79 kDa and the properties of the enzyme were quite similar to prolyl endopeptidase from other tissues or cells. Both the enzyme activation and the sperm motility activation by HSAP were inhibited by benzyloxycarbonyl-L-thioproline-thioprolinal, a specific inhibitor for prolyl endopeptidase. Furthermore, the motility activation by HSAP was inhibited by substrates of the prolyl endopeptidase. Western blotting with mouse anti-prolyl endopeptidase serum revealed the presence of 79 kDa prolyl endopeptidase in the tail fraction of herring sperm. These results suggest that prolyl endopeptidase exists on the surface of the sperm tail and interacts with the HSAP.  相似文献   

14.
A new fungal strain that was isolated from our library was identified as an Aspergillus oryzae and noted to produce a novel proly endopeptidase. The enzyme was isolated, purified, and characterized. The molecular mass of the prolyl endopeptidase was estimated to be 60 kDa by using SDS-PAGE. Further biochemical characterization assays revealed that the enzyme attained optimal activity at pH 4.0 with acid pH stability from 3.0 to 5.0. Its optimum temperature was 30 °C and residual activity after 30 min incubation at 55 °C was higher than 80 %. The enzyme was activated and stabilized by Ca2+ but inhibited by EDTA (10 mM) and Cu2+. The K m and k cat values of the purified enzyme for different length substrates were also evaluated, and the results imply that the enzyme from A. oryzae possesses higher affinity for the larger substrates. Furthermore, this paper demonstrates for the first time that a prolyl endopeptidase purified from A. oryzae is able to hydrolyze intact casein.  相似文献   

15.
Posttranslational modifications influence the structure, stability and biological activity of proteins. Most of the reactions are enzyme-catalyzed, but some, such as asparagine (Asn) and glutamine (Gln) deamidation and the isoaspartate (isoAsp) formation within peptide chains, occur spontaneously. It has been previously shown that certain peptide sequences form isoAsp quite fast if the Asp stretches are exposed to the protein surface, thereby potentially changing susceptibility to proteolysis at these sites. This tempted us to investigate the activity of exo- and endopeptidases against Asp- or isoAsp-containing substrates. Members of the prolyl oligopeptidase family were unable to cleave substrates after proline if isoAsp was placed in the P2-position. Caspases, usually accepting Asp at P1-position of their substrates, did not cleave isoAsp-containing sequences. Similarly, the metal-dependent aminopeptidase amino peptidase N did not turnover N-terminal isoAsp-containing substrates, nor could the endopeptidase matrix metalloproteinase 3 (MMP 3) hydrolyze a serum amyloid A protein-like substrate if the sequence contained isoAsp instead of Asp. Also, the highly specific enterokinase, usually clipping after a stretch of four Asp residues and a lysine in the P1 position, could not turnover substrates if the P2 amino acid was replaced by isoAsp. In contrast, acylamino acid-releasing enzyme and dipeptidyl peptidases 1, 2 and 4 hydrolyzed substrates containing the isoAsp-Ala motif.  相似文献   

16.
A de Waal  L de Jong  A F Hartog  A Kemp 《Biochemistry》1985,24(23):6493-6499
The synthesis is described of the photoaffinity label N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 for the peptide binding site of prolyl 4-hydroxylase. The photoaffinity label is a good substrate and is capable of light-induced inactivation of prolyl 4-hydroxylase activity. Inactivation depends on the concentration of photoaffinity label and is prevented by competition with excess (Pro-Pro-Gly)5. Two moles of photoaffinity label per mole of enzyme is needed for 100% inactivation of enzymic activity. Oxidative decarboxylation of 2-oxoglutarate measured in the absence of added peptide substrate is not affected by labeling. We conclude that the covalently bound nitreno derivative of N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 acts by preventing the binding of peptide substrate to the catalytic site without interfering with the binding of the other substrates and cofactors 2-oxoglutarate, O2, Fe2+, and ascorbate. Labeling is specific for the alpha subunit of the tetrameric alpha 2 beta 2 enzyme. In addition to two catalytic binding sites that are blocked by the photoaffinity label, the enzyme contains binding subsites for peptide substrates, as judged from the capability of photoinactivated enzyme to bind to a poly(L-proline) affinity column. These binding subsites may account for the rapidly increasing affinity for peptide substrates with increasing chain length.  相似文献   

17.
The prolyl peptidase that removes the tetra-peptide of pro-transglutaminase was purified from Streptomyces mobaraensis mycelia. The substrate specificity of the enzyme using synthetic peptide substrates showed proline-specific activity with not only tripeptidyl peptidase activity, but also tetrapeptidyl peptidase activity. However, the enzyme had no other exo- and endo-activities. This substrate specificity is different from proline specific peptidases so far reported. The enzyme gene was cloned, based on the direct N-terminal amino acid sequence of the purified enzyme, and the entire nucleotide sequence of the coding region was determined. The deduced amino acid sequence revealed an N-terminal signal peptide sequence (33 amino acids) followed by the mature protein comprising 444 amino acid residues. This enzyme shows no remarkable homology with enzymes belonging to the prolyl oligopeptidase family, but has about 65% identity with three tripeptidyl peptidases from Streptomyces lividans, Streptomyces coelicolor, and Streptomyces avermitilis. Based on its substrate specificity, a new name, "prolyl tri/tetra-peptidyl aminopeptidase," is proposed for the enzyme.  相似文献   

18.
The prolyl endopeptidase from pig brain was purified to homogeneity according to SDS-gel electrophoresis and visualization with the silver staining procedure. The molecular weight of prolyl endopeptidase was estimated as 70 kDa, and the isoelectric point as 4.9. The molecular properties of prolyl endopeptidase from pig brain are therefore similar to those of prolyl endopeptidases from other mammalian tissues. Diisopropylfluorophosphate, diethylpyrocarbonate and p-chloromercuribenzoic acid are strong irreversible inhibitors of prolyl endopeptidase from pig brain. We showed that diisopropylfluorophosphate und diethylpyrocarbonate act as competitive inhibitors with respect to substrate. Therefore it is assumed that at least one serine and one histidine residue are located at the active site of this enzyme. This result supports the assumption that the prolyl endopeptidase from pig brain is a typical serine protease. Substance P, thyreoliberin, beta-casomorphin-5 and morphiceptin are hydrolysed by prolyl endopeptidase in vitro.  相似文献   

19.
A serine endopeptidase was partially purified from rat liver plasma membranes by using a four-step procedure: solubilization with N-lauroylsarcosine; Ultrogel AcA-34 chromatography; CM Affi-Gel blue chromatography; agarose-soybean trypsin inhibitor chromatography. This enzyme was found to hydrolyze casein and various chromogenic peptide substrates; highest activity occurred with H-D-Val-Leu-Arg-p-nitroanilide, reported to be a specific substrate for human glandular kallikreins. The enzyme was heat-sensitive, showed a pH optimum between 8.0 and 9.0 and was inhibited by D-Phe-L-Phe-L-Arg-CH2Cl, aprotinin, diisopropyl fluorophosphate (DFP), soybean trypsin inhibitor, phenylmethylsulphonyl fluoride, leupeptin, antipain and dithiothreitol. This liver plasma membrane proteinase has an apparent molecular weight of about 30 000 as determined by Ultrogel AcA-34 chromatography and by autoradiography of [3H]DFP-labelled protein electrophoresis.  相似文献   

20.
Abstract— An enzyme with the specificity of a prolyl endopeptidase was purified about 880-fold from rabbit brain. The enzyme hydrolyzes peptidylprolyl-peptide and peptidylprolyl-amino acid bonds. Several biologically active peptides such as angiotensin, bradykinin, neurotensin. substance P and thyrotropin releasing hormone are degraded by hydrolysis of the bond between the carboxyl group of proline and the adjacent amino acid or ammonia respectively. The enzyme is activated by dithiothreitol and inhibited by heavy metals and thiol blocking agents. The serine protease inhibitor phenylmethanesulfonylfluoride has no effect on activity; however, inhibition was obtained with diisopropylfluorophosphate. Prolyl endopeptidase has a molecular weight of about 66,000 and a pH optimum of about 8.3. A new chromogenic substrate, N -benzyloxycarbonylglycyl-L-prolylsulfamethoxazole, was used for determination of enzyme activity. The substrate is hydrolyzed to N -benzyloxycarbonylglycyl-L-proline and free sulfamethoxazole which can be conveniently determined by a colorimetric procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号