首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The relatively consistent fates of the blastomeres of the frog embryo could result from (i) predetermination of the blastomeres or (ii) reproducible morphogenetic cell movements. In some species, the mixing of the cells during development provides a test between these alternative hypotheses. If blastomeres are predetermined, then random intermixing of the descendants with neighboring cells could not alter their fate. To follow cell mixing during Xenopus development, fluorescent dextran lineage tracers were microinjected into identified blastomeres at the 16-cell stage. The labelled descendants of the injected blastomeres were followed over several stages of embryogenesis. After gastrulation, the labelled descendants formed relatively coherent groups in characteristic regions of the embryo. By larval stages, most of the labelled descendants were still located in characteristic regions. However, coherence was less pronounced and individual descendants were located in many regions of the embryo. Hence, cell mixing is a slow, but progressive, process throughout Xenopus development. This is in sharp contrast to the extensive mixing that occurs during the early development of other vertebrates, such as zebrafish and mice. The slow cell mixing in Xenopus development suggests a simple mechanism for the consistent fates of cleavage-stage blastomeres. The stereotyped cell movements of embryogenesis redistribute the largely coherent descendants to characteristic locations in the embryo. The small amount of mixing that does occur would result in variable locations of a small proportion of the descendants; this could contribute to the observed variability of the blastomere fate map. Because cell mixing during Xenopus development is insufficient to challenge possible lineage restrictions, additional experiments must be performed to establish when and if lineage restrictions occur.  相似文献   

4.
5.
6.
Poole RJ  Hobert O 《Current biology : CB》2006,16(23):2279-2292
BACKGROUND: Nervous systems are largely bilaterally symmetric on a morphological level but often display striking degrees of functional left/right (L/R) asymmetry. How L/R asymmetric functional features are superimposed onto an essentially bilaterally symmetric structure and how nervous-system laterality relates to the L/R asymmetry of internal organs are poorly understood. We address these questions here by using the establishment of L/R asymmetry in the ASE chemosensory neurons of C. elegans as a paradigm. This bilaterally symmetric neuron pair is functionally lateralized in that it senses a distinct class of chemosensory cues and expresses a putative chemoreceptor family in a L/R asymmetric manner. RESULTS: We show that the directionality of the asymmetry of the two postmitotic ASE neurons ASE left (ASEL) and ASE right (ASER) in adults is dependent on a L-/R-symmetry-breaking event at a very early embryonic stage, the six-cell stage, which also establishes the L/R asymmetric placement of internal organs. However, the L/R asymmetry of the ASE neurons per se is dependent on an even earlier anterior-posterior (A/P) Notch signal that specifies embryonic ABa/ABp blastomere identities at the four-cell stage. This Notch signal, which functions through two T box genes, acts genetically upstream of a miRNA-controlled bistable feedback loop that regulates the L/R asymmetric gene-expression program in the postmitotic ASE cells. CONCLUSIONS: Our results link adult neuronal laterality to the generation of the A/P axis at the two-cell stage and raise the possibility that neural asymmetries observed across the animal kingdom are similarly established by very early embryonic interactions.  相似文献   

7.
Cellular interactions in early C. elegans embryos   总被引:8,自引:0,他引:8  
J R Priess  J N Thomson 《Cell》1987,48(2):241-250
In normal development both the anterior and posterior blastomeres in a 2-cell C. elegans embryo produce some descendants that become muscles. We show that cellular interactions appear to be necessary in order for the anterior blastomere to produce these muscles. The anterior blastomere does not produce any muscle descendants after either the posterior blastomere or one of the daughters of the posterior blastomere is removed from the egg. Moreover, we demonstrate that a daughter of the anterior blastomere that normally does not produce muscles appears capable of generating muscles when interchanged with its sister, a cell that normally does produce muscles. Embryos develop normally after these blastomeres are interchanged, suggesting that cellular interactions play a major role in determining the fates of some cells in early embryogenesis.  相似文献   

8.
In spite of extensive knowledge on the structure and function of ascidian blood cells, little is known about their embryological origin. In the present investigation, the developmental fate of trunk lateral cells (TLCs) was explored using a specific monoclonal antibody. TLCs comprise a group of undefined embryonic cells of the ascidian Halocynthia roretzi , which arise from the A7.6 blastomeres of a 64-cell embryo. The antigenicity first appeared at the middle tailbud stage in a pair of TLC-clusters situated lateral to the brain stem of the bilaterally symmetrical embryo. The position and number of stained cells did not change during later embryogenesis until hatching. After hatching, the stained cells were found in the entire trunk region of the swimming larva. After metamorphosis, cells that expressed the antigen were present within the coelom and within the tunic layer of the juvenile. In addition, the antibody stained adult basophilic blood cells. These observations suggest a relationship of this group of embryonic cells with the prospective blood forming mesenchymal cells.  相似文献   

9.
The clypeo-labrum, or upper lip, of insects is intimately involved in feeding behavior and is accordingly endowed with a rich sensory apparatus. In the present study we map the temporal appearance of all major clusters of sensory cells on this structure in the locust during the first half of embryogenesis. The identities of these sensory cell clusters were defined according to the origin of the branching point of their axons from the labral sensory nerve as seen at mid-embryogenesis. The first sensory cells to differentiate from the labral epithelium do so at stereotypic sites beginning at around 32% of embryogenesis. Bilaterally symmetrical clusters of differentiated neurons rapidly appear and pioneering of the labral sensory nerve on each side is performed by a specific cell from each cluster. This cell directs its axon anteriorly towards a bilaterally symmetrical pair of cells, the frontal commissure pioneers, on either side of the developing frontal ganglion. The final trajectory of the sensory nerve within the labrum closely matches the pattern of Repo-expressing glial cells. The majority of the sensory cell clusters differentiate during embryogenesis, but the number of sensory cells in some clusters are modified significantly during postembryonic development. Comparing the innervation pattern of the clypeo-labrum with that of other mouthparts and the leg at mid-embryogenesis, we find a striking similarity in organization which we interpret as support for the homologous appendage hypothesis.  相似文献   

10.
Gastrulation in Caenorhabditis elegans has been described by following the movements of individual nuclei in living embryos by Nomarski microscopy. Gastrulation starts in the 26-cell stage when the two gut precursors, Ea and Ep, move into the blastocoele. The migration of Ea and Ep does not depend on interactions with specific neighboring cells and appears to rely on the earlier fate specification of the E lineage. In particular, the long cell cycle length of Ea and Ep appears important for gastrulation. Later in embryogenesis, the precursors to the germline, muscle and pharynx join the E descendants in the interior. As in other organisms, the movement of gastrulation permit novel cell contacts that are important for the specification of certain cell fates.  相似文献   

11.
12.
The role of cell lineage in development   总被引:2,自引:0,他引:2  
Studies of the role of cell lineage in development began in the latter part of the 19th century, fell into decline in the early part of the 20th, and were revived about 20 years ago. This recent revival was accompanied by the introduction of new and powerful analytical techniques. Concepts of importance for cell lineage studies include the principal division modes by which a cell may give rise to its descendant clone (proliferative, stem cell and diversifying); developmental determinacy, or indeterminacy, which refer to the degree to which the normal cleavage pattern of the early embryo and the developmental fate of its individual cells is, or is not, the same in specimen after specimen; commitment, which refers to the restriction of the developmental potential of a pluripotent embryonic cell; and equivalence group, which refers to two or more equivalently pluripotent cell clones that normally take on different fates but of which under abnormal conditions one clone can take on the fate of another. Cell lineage can be inferred to have a causative role in developmental cell fate in embryos in which induced changes in cell division patterns lead to changes in cell fate. Moreover, such a causative role of cell lineage is suggested by cases where homologous cell types characteristic of a symmetrical and longitudinally metameric body plan arise via homologous cell lineages. The developmental pathways of commitment to particular cell fates proceed according to a mixed typologic and topographic hierarchy, which appears to reflect an evolutionary compromise between maximizing the ease of ordering the spatial distribution of the determinants of commitment and minimizing the need for migration of differentially committed embryonic cells. Comparison of the developmental cell lineages in leeches and insects indicates that the early course of embryogenesis is radically different in these phyletically related taxa. This evolutionary divergence of the course of early embryogenesis appears to be attributable to an increasing prevalence of polyclonal rather than monoclonal commitment in the phylogenetic line leading from an annelid-like ancestor to insects.  相似文献   

13.
Summary A library of hybridoma cell lines has been established which produce monoclonal antibodies against antigens from the germinal vesicle ofXenopus laevis oocytes. Many of the antigens are also found in the nuclei ofXenopus embryonic cells in culture. The fate of two of these antigens during embryogenesis was traced by immunofluorescence on embryo and tadpole sections. Early in development these antigens appear to be evenly distributed in the nuclei of all cells. In later stages they gradually disappear from most embryonic structures but are strongly accumulated in the nuclei of some specific cell types and organs.  相似文献   

14.
15.
One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo.  相似文献   

16.
Analysis of cell lineage in two- and four-cell mouse embryos   总被引:6,自引:0,他引:6  
Compared with other animals, the embryos of mammals are considered to have a highly regulative mode of development. However, recent studies have provided a strong correlation between the first cleavage plane and the future axis of the blastocyst, but it is still unclear how the early axes of the preimplantation embryo reflect the future body axes that emerge after implantation. We have carried out lineage tracing during mouse embryogenesis using the Cre-loxP system, which allowed us to analyze cell fates over a long period of development. We used a transgenic mouse strain, CAG-CAT-Z as a reporter line. The descendants of the manipulated blastomere heritably express beta-galactosidase. We examined the distribution of descendants of a single blastomere in the 8.5-day embryo after labeling at the two-cell and four-cell stages. The derivatives of one blastomere in the two-cell embryo randomly mix with cells originating from the second blastomere in all cell layers examined. Thus we find cells from different blastomeres intermingled and localized randomly along the body axis. The results of labeling experiments performed in the four-cell stage embryo fall into three categories. In the first, the labeled cells were intermingled with non-labeled cells in a manner similar to that seen after labeling at the two-cell stage. In the second, labeled cells were distributed only in the extra-embryonic ectoderm layers. Finally in the third category, labeled cells were seen only in the embryo proper and the extra-embryonic mesoderm. Manipulated embryos analyzed at the blastocyst stage showed localized distribution of the descendants of a single blastomere. These results suggest that incoherent clonal growth and drastic cell mixing occurs in the early mouse embryo after the blastocyst stage. The first cell specification event, i.e., partitioning cell fate between the inner cell mass and trophectoderm, can occur between the two-cell and four-cell stage, yet the cell fate is not determined.  相似文献   

17.
18.
19.
The development of many animal organs involves a mesenchymal to epithelial transition, in which cells develop and coordinate polarity through largely unknown mechanisms. The C. elegans pharynx, which is an epithelial tube in which cells polarize around a central lumen, provides a simple system with which to understand the coordination of epithelial polarity. We show that cell fate regulators cause pharyngeal precursor cells to group into a bilaterally symmetric, rectangular array of cells called the double plate. The double plate cells polarize with apical localization of the PAR-3 protein complex, then undergo apical constriction to form a cylindrical cyst. We show that laminin, but not other basement membrane components, orients the polarity of the double plate cells. Our results provide in vivo evidence that laminin has an early role in cell polarity that can be distinguished from its later role in basement membrane integrity.  相似文献   

20.
Determinative properties of muscle lineages in ascidian embryos   总被引:5,自引:0,他引:5  
Blastomeres removed from early cleavage stage ascidian embryos and reared to 'maturity' as partial embryos often elaborate tissue-specific features typical of their constituent cell lineages. We used this property to study recent corrections of the ascidian larval muscle lineage and to compare the ways in which different lineages give rise to muscle. Our evaluation of muscle differentiation was based on histochemical localization and quantitative radiometric measurement of a muscle-specific acetylcholinesterase activity, and the development of myofilaments and myofibrils as observed by electron microscopy. Although the posterior-vegetal blastomeres (B4.1 pair) of the 8-cell embryo have long been believed to be the sole precursors of larval muscle, recent studies using horseradish peroxidase to mark cell lineages have shown that small numbers of muscle cells originate from the anterior-vegetal (A4.1) and posterior-animal (b4.2) blastomeres of this stage. Fully differentiated muscle expression in isolated partial embryos of A4.1-derived cells requires an association with cells from other lineages whereas muscle from B4.1 blastomeres develops autonomously. Clear differences also occurred in the time acetylcholinesterase activity was first detected in partial embryos from these two sources. Isolated b4.2 cells failed to show any muscle development even in combination with anterior-animal cells (a4.2) and are presumably even more dependent on normal cell interactions and associations. Others have noted an additional distinction between the different sources of muscle: muscle cells from non-B4.1 lineages occur exclusively in the distal part of the tail, while the B4.1 descendants contribute those cells in the proximal and middle regions. During the course of ascidian larval evolution tail muscle probably had two origins: the primary lineage (B4.1) whose fate was set rigidly at early cleavage stages and secondarily evolved lineages which arose later by recruitment of cells from other tissues resulting in increased tail length. In contrast to the B4.1 lineage, muscle development in the secondary lineages is controlled less rigidly by processes that depend on cell interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号