首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman and infrared spectra of fully hydrated bilayers of 1,2-dioleoyl phosphatidylcholine (DOPC) were measured at increasing hydrostatic pressures up to -37 kbar. Under ambient conditions aqueous dispersions of DOPC are in the liquid crystalline state. The application of an external hydrostatic pressure induces conformational and dynamic ordering processes in DOPC, which trigger a first-order structural phase transition at 5 kbar from a disordered liquid crystalline state to a highly ordered gel state. In the gel phase the methylene chains of each molecule are fully extended and the two all-trans chain segments on both sides of the rigid cis double bond form a bent structure. The bent oleoyl chains in each molecule, as well as in neighboring molecules are packed parallel to each other. To achieve this parallel interchain packing, the double bonds of the sn-1 and sn-2 chains of each molecule must be aligned at the same position with respect to the bilayer interface which is achieved by a rotation of the C—C bonds in the glycerol moiety in the head group. The extremely strong interchain interactions in the gel phase of DOPC are unique for this lipid with cis dimono-unsaturated acyl chains. Our experimental results suggest that in the pressure-induced gel phase of DOPC the olefinic CH bonds are rotated out of the phase of the bent oleoyl chains and that the oleoyl chains of opposing bilayers bend towards opposite directions.  相似文献   

2.
P T Wong  C H Huang 《Biochemistry》1989,28(3):1259-1263
The barotropic behavior of D2O dispersions of 1-stearoyl-2-caproyl-sn-glycero-3-phosphocholine, C(18):C(10)PC, a highly asymmetric phospholipid in which the length of the fully extended acyl chain at the sn-1 position of the glycerol backbone is twice as long as that at the sn-2 position, has been investigated by high-pressure Fourier transform infrared spectroscopy. This asymmetric phosphatidylcholine bilayer at room temperature displays a pressure-induced phase transition corresponding to the liquid-crystalline----gel phase transition at 1.4 kbar. A conformational ordering of the lipid acyl chains is observed to take place abruptly at the transition pressure of 1.4 kbar. However, the lamellar lipid molecules and their acyl chains remain to be orientationally disordered in the gel phase until the applied pressure reaches 5.5 kbar. In the gel phase of fully hydrated C(18):C(10)PC, the asymmetric lipid molecules assemble into mixed interdigitated bilayers with perpendicular orientation of the zigzag planes among neighboring acyl chains. The role of excess water played in the interchain structure and the behavior of excess water and bound water under high pressure are also discussed.  相似文献   

3.
Dilauroyl and dimyristoylphosphatidylglycerol (DMPG) form a more stable gel state when aqueous suspensions are incubated several days at low temperature (0-2 degrees C), pH 7.4 with 0.15 M NaCl. This gel state is characterized by a higher transition temperature and a higher transition enthalpy. The geometry of this gel state is distinguishable from the metastable gel state that forms rapidly upon hydration on the basis of its x-ray diffraction pattern. Infrared spectra in the CH2 scissoring region indicate that the stable gel phase of DMPG is also characterized by reduced reorientational fluctuations of acyl chains and increased interchain interactions. Analysis of vibrational bands due to ester carbonyl groups of DMPG suggests that the transition to a new gel phase is initiated by changes in the interfacial and/or headgroup region of the bilayer, most likely via formation of interlipid hydrogen bonds. The melting of the stable gel phase of DMPG is accompanied by a gross morphological change resulting in vesiculation.  相似文献   

4.
Raman spectra of aqueous dispersions of 1,2-dipalmitoyl-phosphatidylcholine (DPPC) have been measured as a function of pressure (up to 46 kbar) for samples incubated at 2°C and for nonincubated DPPC samples subjected to equally high pressure. The nature of the transition from the GII gel phase of the hydrated lipid into the subgel phase on incubation is entirely different from that of the transition from the GII gel phase into the GIII gel phase of the nonincubated lipid. The GIII gel phase has a monoclinic interchain packing, while the subgel phase exhibits a triclinic interchain structure. It is shown that pressure cannot induce the transition from the GII gel phase to the subgel phase; however, it does stabilize the subgel phase above the subtransition temperature. The mechanism for the formation of the subgel phase and the complex phase behavior of the gel phase of DPPC are rationalized in terms of the dynamic properties of the acyl chains of the lipid molecule.  相似文献   

5.
The polymorphic phase behavior of aqueous dispersions of a number of representative phosphatidylcholines with methyl iso-branched fatty acyl chains was investigated by Fourier transform infrared (FT-IR) and phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy. For the longer chain phosphatidylcholines, where two transitions are resolved on the temperature scale, the higher temperature event can unequivocally be assigned to the melting of the acyl chains (i.e., a gel/liquid-crystalline phase transition), whereas the lower temperature event is shown to involve a change in the packing mode of the methylene and carbonyl groups of the hydrocarbon chains in the gel state (i.e., a gel/gel transition). The infrared spectroscopic data suggest that the methyl iso-branched phosphatidylcholines assume a partially dehydrated, highly ordered state at low temperatures, resembling the Lc phase recently described for the long-chain n-saturated phosphatidylcholines. At higher temperatures, some branched-chain phosphatidylcholines appear to assume a fully hydrated, loosely packed gel phase similar to but not identical with the P beta, phase of their linear saturated analogues. Thus, the iso-branched phosphatidylcholine gel/gel transition corresponds, at least approximately, to a summation of the structural changes accompanying both the subtransition and the pretransition characteristic of the longer chain n-saturated phosphatidylcholines. The infrared spectroscopic data also show that, in the low-temperature gel state, there are significant differences between the odd- and even-numbered isoacylphosphatidylcholines with respect to their hydrocarbon chain packing modes as well as to their head group and interfacial hydration states.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
It is shown, by infrared spectroscopy, that the packing in the gel phase of fully-hydrated dipalmitoyl phosphatidylcholine is not uniform over a large temperature range. With decreasing temperature, starting at that of the pretransition, there is a gradual change in the molecular packing of the acyl chains, from near hexagonal to orthorhombic of monoclinic.  相似文献   

7.
Recent studies of five different phosphatidylcholine/phosphatidylcholine (PC/PC) systems indicate that binary mixtures of phosphatidylcholines in which one component has a normalized chain length difference (delta C/CL) in the range of 0.09-0.40 and the other a delta C/CL in the range of 0.42-0.57 exhibit the phase behavior of a eutectic system. Here, delta C is the effective chain-length difference between the two acyl chains, and CL is the effective length of the longer of the two acyl chains for the same lipid molecule in the gel state. In each mixture, gel phase immiscibility occurs over a wide compositional range due to the difference in the gel phase acyl chain packing properties of each component. Although the mixtures differ in the location of their eutectic horizontal, with respect to temperature, all have a similar eutectic point that occurs at a composition of approximately 40 mol percent of the component with the delta C/CL value in the range of 0.42-0.57. Here, we extend these studies by systematically modifying the headgroup of C(17):C(17)PC and then analyzing the mixing behavior of the modified lipid with C(22):C(12)PC using DSC. Progressive demethylation of the C(17):C(17)PC headgroup leads to an increase in gel phase immiscibility and a decrease in the amount of C(22):C(12)PC that comprises the eutectic composition. The temperature defining the location of the eutectic horizontal, however, remains virtually unchanged in all three phase diagrams. Our results suggest that the eutectic composition is influenced by changes in gel phase acyl chain packing that are dependent on headgroup-headgroup interactions. In contrast, the eutectic nature of the phase diagram and the location of its solidus line are properties of acyl chain interactions that are independent of phospholipid headgroup-headgroup interactions.  相似文献   

8.
The thermotropic phase behavior of a homologous series of phosphatidylcholines containing acyl chains with omega-tertiary butyl groups was studied by differential scanning calorimetry, Fourier transform infrared spectroscopy, and 31P-nuclear magnetic resonance spectroscopy (31P-NMR). Upon heating, aqueous dispersions of these lipids exhibit single transitions which have been identified as direct conversions from Lc-like gel phases to the liquid-crystalline state by both infrared and 31P-NMR spectroscopy. The calorimetric data indicate that the thermodynamic properties of the observed transition are strongly dependent upon whether the acyl chains contain an odd- or an even-number of carbon atoms. This property is manifest by a pronounced odd/even alternation in the transition temperatures and transition enthalpies of this homologous series of lipids, attributable to the fact that the odd-numbered compounds form gel phases that are more stable than those of their even-numbered counterparts. The spectroscopic data also suggest that unlike other lipids which exhibit the so-called odd/even effect, major odd/even discontinuities in the packing of the polymethylene chains are probably not the dominant factors responsible for the odd/even discontinuities exhibited by these lipids, because only subtle differences in the appropriate spectroscopic parameters were detected. Instead, the odd/even alternation in the physical properties of these lipids may be attributable to significant differences in the organization of the carbonyl ester interfacial regions of the lipid bilayer and to differences in the intermolecular interactions between the terminal t-butyl groups of the odd- and even-numbered homologues. Our results also suggest that the presence of the bulky t-butyl groups in the center of the lipid bilayer reduces the conformational disorder of the liquid-crystalline polymethylene chains, and promotes the formation of Lc-like gel phases. However, these Lc-like gel phases are considerably less ordered than those formed by saturated, straight-chain lipids.  相似文献   

9.
The thermotropic phase behavior of four members of the homologous series of dl-methyl anteisobranched phosphatidylcholines was investigated by Fourier transform infrared spectroscopy. The odd-numbered phosphatidylcholines exhibit spectral changes in two distinct temperature ranges, while their even-numbered counterparts exhibit spectral changes within only a single temperature range. The high-temperature transition observed in the odd-numbered phosphatidylcholines and the single thermotropic event characteristic of the phase behavior of their even-numbered counterparts are both identified as gel/liquid-crystalline phase transitions. The low-temperature event exhibited only by the odd-numbered phospholipids is identified as a gel/gel phase transition that involves changes in the packing mode of the acyl chain methylene groups, as well as changes in the conformation of the glycerol ester interface. These infrared spectroscopic data thus suggest that at low temperatures the odd-numbered methyl anteisobranched phosphatidylcholines form a highly ordered condensed phase similar to the Lc phases of the linear saturated n-acyl-phosphatidylcholines. A comparable condensed phase was not formed by the even-numbered anteisobranched phosphatidylcholines under similar conditions. The properties of the gel states of the even-numbered anteisoacylphosphatidylcholines were generally similar to those of the high-temperature gel states of their odd-numbered counterparts. Those gel states exhibit spectral characteristics indicative of hexagonally packed but relatively mobile acyl chains. The temperature-dependent changes in the spectral characteristics of these gel states were continuous and were not resolved into the discrete but overlapping transitions observed by differential scanning calorimetry.  相似文献   

10.
R N Lewis  R N McElhaney 《Biochemistry》1985,24(10):2431-2439
The thermotropic phase behavior of aqueous dispersions of phosphatidylcholines containing one of a series of methyl iso-branched fatty acyl chains was studied by differential scanning calorimetry. These compounds exhibit a complex phase behavior on heating which includes two endothermic events, a gel/gel transition, involving a molecular packing rearrangement between two gel-state forms, and a gel/liquid-crystalline phase transition, involving the melting of the hydrocarbon chains. The gel to liquid-crystalline transition is a relatively fast, highly cooperative process which exhibits a lower transition temperature and enthalpy than do the chain-melting transitions of saturated straight-chain phosphatidylcholines of similar acyl chain length. In addition, the gel to liquid-crystalline phase transition temperature is relatively insensitive to the composition of the aqueous phase. In contrast, the gel/gel transition is a slow process of lower cooperativity than the gel/liquid-crystalline phase transition and is sensitive to the composition of the bulk aqueous phase. The gel/gel transitions of the methyl iso-branched phosphatidylcholines have very different thermodynamic properties and depend in a different way on hydrocarbon chain length than do either the "subtransitions" or the "pretransitions" observed with linear saturated phosphatidylcholines. The gel/gel and gel/liquid-crystalline transitions are apparently concomitant for the shorter chain iso-branched phosphatidylcholines but diverge on the temperature scale with increasing chain length, with a pronounced odd/even alternation of the characteristic temperatures of the gel/gel transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The thermotropic and barotropic gel-phase polymorphism of a homologous series of saturated, straight-chain beta-D-glucosyldiacylglycerols was studied by Fourier transform infrared spectroscopy. Three spectroscopically distinct lamellar gel phases were detected thermotropically. Upon cooling to temperatures below the gel/liquid-crystalline phase transition temperature, all of these lipids form a metastable L beta gel phase characterized by orientationally disordered all-trans acyl chains. The transformation of the metastable L beta phase to a stable crystalline (Lc2) phase first involves the formation of an intermediate which itself is an ordered crystal-like (Lc1) phase. In the intermediate Lc1 phase, the zigzag planes of the polymethylene chains are nearly perpendicular to one another, and one of the ester carbonyl oxygens is engaged in a strong hydrogen bond, probably to the 2-hydroxyl of the sugar headgroup. The transformation of the Lc1 phase to the Lc2 phase involves a reorientation of the all-trans hydrocarbon chains and is probably driven by the strengthening of the hydrogen bond between the carbonyl ester oxygen and its proton donors. Since a "solid-state" reorganization of the acyl chains is an integral part of that process, it tends to become more sluggish as the chain length increases and is not observed with the longer chain homologues (N greater than 16). The spectroscopic characteristics of the most stable gel phases of the odd- and even-numbered members of this homologous series of compounds exhibit only minor differences, indicating that the structures of these phases are generally similar. The barotropic phase behavior of the shorter and longer chain beta-D-glucosyldiacylglycerols is also different. Compression of the L beta phase of the shorter chain compounds results in immediate conversion to their stable lc phases, whereas compression of the L beta phase of the longer chains does not. Furthermore, compression of the longer chain compounds may result in the formation of chain-interdigitated bilayers, whereas this is not the case for the shorter chain homologues. We suggest that the gel phase formed by any given homologue at a given temperature or pressure is that which maximizes the sometimes competing requirements for the optimal packing of the sugar headgroups and the hydrocarbon chains.  相似文献   

12.
High-pressure Fourier-transform infrared (FT-IR) spectroscopy was used to study the barotropic behavior of phosphatidylserine bilayers and their interactions with the local anesthetic tetracaine. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) in the absence and the presence of tetracaine at pH 5.5 and 9.5. The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results show that the barotropic behavior of the negatively charged phosphatidylserine bilayers is very similar to that observed for zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, with corresponding acyl chains. The results also indicate that the local anesthetic partitions into phosphatidylserine bilayers in an environment close to the membrane-water interface and interacts electrostatically with the lipid head group. Application of high hydrostatic pressure on the lipid-anesthetic systems results in the pressure-induced expulsion of the anesthetic from a membrane to an aqueous environment. The pressures required for expulsion of anesthetic from bilayers are much higher for the unsaturated lipid (DOPS) than for the saturated lipid (DMPS) (approximately 6 kbar vs approximately 2 kbar, respectively). Whereas incorporation of the anesthetic into DOPS bilayers does not affect significantly the structural and dynamic properties of the disordered acyl chains in the liquid-crystalline phase, it orders the DMPS acyl chains in the gel phase.  相似文献   

13.
Lactosylceramide (LacCer) is a pivotal intermediate in the metabolism of higher gangliosides, localizes to sphingolipid-sterol "rafts," and has been implicated in cellular signaling. To provide a fundamental characterization of LacCer phase behavior and intermolecular packing, LacCer containing different saturated (16:0, 18:0, 24:0) or monounsaturated (18:1(Delta9), 24:1(Delta15)) acyl chains were synthesized and studied by differential scanning calorimetry and Langmuir film balance approaches. Compared to related sphingoid- and glycerol-based lipids, LacCers containing saturated acyl chains display relatively high thermotropic and pressure-induced transitions. LacCer monolayer films are less elastic in an in-plane sense than sphingomyelin films, but are somewhat more elastic than galactosylceramide films. Together, these findings indicate that the disaccharide headgroup only marginally disrupts gel phase packing and orients more perpendicular than parallel to the interface. This contrasts the reported behavior of digalactosyldiglycerides with saturated acyl chains. Introducing single cis double bonds into the LacCer acyl chains dramatically lowers the high thermotropic and pressure-induced transitions. Greater reductions occur when cis double bonds are located near the middle of the acyl chains. The results are discussed in terms of how an extended disaccharide headgroup can enhance interactions among naturally abundant LacCers with saturated acyl chains.  相似文献   

14.
High-pressure Fourier transform infrared (FT-IR) spectroscopy was used to study the effects of a local anesthetic, tetracaine, on the structural and dynamic properties of lipids in model membranes. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (DHPC) in the absence and presence of a physiological concentration of cholesterol (30 mol %). The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results indicate that the effects of tetracaine on the structure of pure DMPC bilayers in the gel state are dependent on the state of charge of the anesthetic. The uncharged tetracaine disorders the lipid acyl chains while the charged form induces the formation of an interdigitated gel phase. The presence of cholesterol in the latter system prevents the formation of the interdigitated phase, whereas in the former system it disorders the lipid acyl chains in the gel state. Moreover, it is shown that the addition of uncharged tetracaine to interdigitated DHPC bilayers does not alter the interdigitated state of the hydrocarbon chains.  相似文献   

15.
The interaction of aqueous phospholipid dispersions of negatively charged 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG) with the divalent cations Mg(2+), Ca(2+) and Sr(2+) at equimolar ratios in 100 mM NaCl at pH 7 was investigated by Fourier transform infrared spectroscopy. The binding of the three cations induces a crystalline-like gel phase with highly ordered and rigid all-trans acyl chains. These features are observed after storage below room temperature for 24 h. When the gel phase is heated after prolonged incubation at low temperature phase transitions into the liquid crystalline phase are observed at 58 degrees C for the DMPG:Sr(2+), 65 degrees C for the DMPG:Mg(2+), and 80 degrees C for the DMPG:Ca(2+) complex. By subsequent cooling from temperatures above T(m) these complexes retain the features of a liquid crystalline phase with disordered acyl chains until a metastable gel phase is formed at temperatures between 38 and 32 degrees C. This phase is characterized by predominantly all-trans acyl chains, arranged in a loosely packed hexagonal or distorted hexagonal subcell lattice. Reheating the DMPG:Sr(2+) samples after a storage time of 2 h at 4 degrees C results in the transition of the metastable gel to the liquid crystalline phase at 35 degrees C. This phase transition into the liquid crystalline state at 35 degrees C is also observed for the Mg(2+) complex. However, for DMPG:Mg(2+) at higher temperatures, a partial recrystallization of the acyl chains occurs and the high temperature phase transition at 65 degrees C is also detected. In contrast, DMPG:Ca(2+) exhibits only the phase transition at 80 degrees C from the crystalline gel into the fluid state upon reheating. Below 20 degrees C, the rate of conversion from the metastable gel to a thermodynamically stable, crystalline-like gel phase decreases in the order Ca(2+)&z. Gt;Mg(2+)>Sr(2+). This conversion into the crystalline gel phase is accompanied by a complete dehydration of the phosphate groups in DMPG:Mg(2+) and by a reorientation of the polar lipid head groups in DMPG:Ca(2+) and in DMPG:Sr(2+). The primary binding sites of the cations are the PO(2)(-) groups of the phosphodiester moiety. Our infrared spectroscopic results suggest a deep penetration of the divalent cations into the polar head group region of DMPG bilayers, whereby the ester carbonyl groups, located in the interfacial region of the bilayers, are indirectly affected by strong hydrogen bonding of immobilized water molecules. In the liquid crystalline phase, the interaction of all three cations with DMPG is weak, but still observable in the infrared spectra of the DMPG:Ca(2+) complex by a slight ordering effect induced in the acyl chains, when compared to pure DMPG liposomes.  相似文献   

16.
A new thermotropic phase transition, at ?30°C and atmospheric pressure, was found to occur in the gel phase of aqueous DPPC dispersions. The Raman spectral changes at this phase transition are similar to those observed in the gel phase of DMPC dispersions at ?60°C. The thermotropic phase transition at ?30°C is equivalent to the barotropic GII to GIII phase transition observed in DPPC at 1.7 kbar and 30°C. It is shown that the rate of the large angle interchain reorientational fluctuations decreases gradually with decreasing temperature, and that the orientationally disordered acyl chain structure of the GII phase is extended into the GIII phase of DPPC. The interchain interaction, arising from the damping of the reorientational fluctuations, increases with decreasing temperature in the GII gel phase as well as in the GIII gel phase.  相似文献   

17.
We have investigated the phase characteristics of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC23PC), a phosphatidylcholine with diacetylenic groups in the acyl chains, and its saturated analog 1,2-ditricosanoyl-sn-glycero-3-phosphocholine (DTPC), using Fourier-transform infrared spectroscopy (FTIR). Previous studies on the phase behavior of DC23PC in H2O have shown that DC23PC exhibits: (1) formation of cylindrical structures ('tubules') by cooling fluid phase multilamellar vesicles (MLVs) through Tm (43 degrees C), and 2) metastability of small unilamellar vesicles (SUVs) in the liquid-crystalline state some 40 degrees C below Tm, with subsequent formation of a gel phase comprised of multilamellar sheets at 2 degrees C. The sheets form tubules when heated and cooled through Tm. FTIR results presented here indicate that as metastable SUVs are cooled toward the transition to bilayer sheets, spectroscopic changes occur before the calorimetric transition as measured by a reduction in the CH2 symmetric stretch frequency and bandwidth. In spite of the vastly different morphologies, the sheet gel phase formed from SUVs is spectroscopically similar to the tubule gel phase. The C-H stretch region of DC23PC gel phase shows bands at 2937 and 2810 cm-1 not observed in the saturated analog of DC23PC, which may be related to perturbations in the acyl chains introduced by the diacetylenic moiety. The narrow CH2 scissoring mode at 1470 cm-1 and the prominent CH2 wagging progression indicate that DC23PC gel phase was highly ordered acyl chains with extended regions of all-trans methylene segments. In addition, the 13 cm-1 reduction in the C = O stretch frequency (1733-1720 cm-1) during the induction of DC23PC gel phase indicates that the interfacial region is dehydrated and rigid in the gel phase.  相似文献   

18.
16-Fluoropalmitic acid was synthesized from 16-hydroxypalmitic acid using diethylaminosulfur trifluoride. This monofluorinated fatty acid then was used to make 1-palmitoyl-2-[16-fluoropalmitoyl]-phosphatidylcholine (F-DPPC) as a fluorinated analog of dipalmitoylphosphatidylcholine (DPPC). Surprisingly, we found that the phase transition temperature (Tm) of F-DPPC occurs near 50 degrees C, approximately 10 degrees C higher than its nonfluorinated counterpart, DPPC, as judged by both differential scanning calorimetry and infrared spectroscopy. The pretransition observed for DPPC is absent in F-DPPC. A combination of REDOR, rotational-echo double-resonance, and conventional solid-state NMR experiments demonstrates that F-DPPC forms a fully interdigitated bilayer in the gel phase. Electron paramagnetic resonance experiments show that below Tm, the hydrocarbon chains of F-DPPC are more motionally restricted than those of DPPC. X-ray scattering experiments confirm that the thickness and packing of gel phase F-DPPC is similar to that of heptanetriol-induced interdigitated DPPC. F-DPPC is the first phosphoglyceride containing sn-1 and sn-2 ester-linked fatty acyl chains of equal length that spontaneously forms interdigitated bilayers in the gel state in the absence of inducing agents such as alcohols.  相似文献   

19.
Molecular packing and the thermotropic phase behavior of fully hydrated ammonium salts of 1,2-dimyristoyl-sn-glycero-3-phosphatidyl-sn-1'-glycerol (1'-DMPG) and the corresponding 3' stereoisomer (3'-DMPG) as well as the effects of 300 mM NaCl on these lipids were studied by Fourier transform infrared (FTIR) spectroscopy. The ammonium salts of both stereoisomer show similar thermotropic phase behavior and have an order-disorder phase transition at approximately 21 degrees C. While complexing with Na+, however, an incubation of liposomes at +6 degrees C for 3 days results in significant structural differences between liposomes of 1'-DMPG and 3'-DMPG. In the presence of 300 mM NaCl the infrared spectra for 3'-DMPG reveal the appearance of a more solidified lipid nominated here as the highly crystalline phase with a transition into the liquid-crystalline state at a significantly higher temperature (approximately at 33 degrees C) than that for 1'-DMPG (approximately at 23 degrees C). Crystal field splitting resulting from interchain vibrational coupling is observed in the CH2 scissoring mode of the 3'-DMPG(Na+) complex in the highly crystalline phase (T less than 33 degrees C); i.e., the acyl chains are packed in a rigid orthorhombic- or monoclinic-like crystal lattice. At temperatures above the transition at 33 degrees C the acyl chains of 3'-DMPG(Na+) give rise to infrared spectra indicative of hexagonal packing. The latter type of hydrocarbon chain packing is also found for the ammonium salts of 1'-DMPG and 3'-DMPG without Na+ as well as for 1'-DMPG with Na+. In addition, the binding of Na+ to 3'-DMPG causes narrowing of the bands associated with the interfacial and polar headgroup regions of 3'-DMPG and thus reveals reduced motional freedom. This demonstrates that Na+ binds tightly to 3'-DMPG, leading to the immobilization of the entire phospholipid polar headgroup. Such effects by Na+ are not observed for 1'-DMPG.  相似文献   

20.
The thermotropic phase behavior of an odd- and an even-numbered member of the homologous series of 1,2-di-omega-cyclohexylphosphatidylcholines was studied using Fourier transform infrared spectroscopy. The results obtained indicate that the pronounced discontinuities in the behavior of the odd- and even-numbered homologues observed by differential scanning calorimetry can be attributed to differences in the organization of their respective gel states. The single phase transition exhibited by the odd-numbered compounds upon heating is shown by infrared spectroscopy to be a direct transition from a condensed, subgel-like phase (Lc phase) to the liquid-crystalline state (L alpha phase). In contrast, the multiple transitions exhibited by the even-numbered homologues are shown to be due to the initial conversion of an L beta-like phase to a more loosely packed gel phase, followed by the acyl chain-melting transition. Moreover, the major changes in the interaction between the acyl chains, and in the organization of the interfacial region of the bilayers formed by the even-numbered homologue, occur at temperatures below that of the onset of the chain-melting phase transition. The infrared spectroscopic changes observed also suggest that above the chain-melting transition, the odd- and even-numbered homologues form similar liquid-crystalline phases that are more 'ordered' than those of normal saturated straight-chain phosphatidylcholines. Most likely this is because the large size and the intrinsic rigidity of the omega-cyclohexyl group reduces the conformational disorder of the liquid-crystalline state by 'dampening' all acyl chain motions. The formation of a relatively ordered liquid-crystalline state may be the critical property exploited by the thermoacidophylic organisms in which omega-cyclohexyl fatty acids naturally occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号