共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition 总被引:13,自引:0,他引:13
Tanabe T Chamaillard M Ogura Y Zhu L Qiu S Masumoto J Ghosh P Moran A Predergast MM Tromp G Williams CJ Inohara N Núñez G 《The EMBO journal》2004,23(7):1587-1597
Multiple genetic variants of CARD15/NOD2 have been associated with susceptibility to Crohn's disease and Blau syndrome. NOD2 recognizes muramyl dipeptide (MDP) derived from bacterial peptidoglycan (PGN), but the molecular basis of recognition remains elusive. We performed systematic mutational analysis to gain insights into the function of NOD2 and molecular mechanisms of disease susceptibility. Using an archive of 519 mutations covering approximately 50% of the amino-acid residues of NOD2, the essential regulatory domains and specific residues of NOD2 involved in recognition of MDP were identified. The analysis revealed distinct roles for N-terminal and C-terminal leucine-rich repeats (LRRs) in the modulation of NOD2 activation and bacterial recognition. Within the C-terminal LRRs, variable residues predicted to form the beta-strand/betaturn structure were found to be essential for the response to MDP. In addition, we analyzed NOD1, a NOD2-related protein, revealing conserved and nonconserved amino-acid residues involved in PGN recognition. These results provide new insights into the molecular function and regulation of NOD2 and related NOD family proteins. 相似文献
2.
Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease 总被引:26,自引:0,他引:26
Inohara N Ogura Y Fontalba A Gutierrez O Pons F Crespo J Fukase K Inamura S Kusumoto S Hashimoto M Foster SJ Moran AP Fernandez-Luna JL Nuñez G 《The Journal of biological chemistry》2003,278(8):5509-5512
NOD2, a protein associated with susceptibility to Crohn's disease, confers responsiveness to bacterial preparations of lipopolysaccharide and peptidoglycan, but the precise moiety recognized remains elusive. Biochemical and functional analyses identified muramyl dipeptide (MurNAc-L-Ala-D-isoGln) derived from peptidoglycan as the essential structure in bacteria recognized by NOD2. Replacement of L-Ala for D-Ala or D-isoGln for L-isoGln eliminated the ability of muramyl dipeptide to stimulate NOD2, indicating stereoselective recognition. Muramyl dipeptide was recognized by NOD2 but not by TLR2 or co-expression of TLR2 with TLR1 or TLR6. NOD2 mutants associated with susceptibility to Crohn's disease were deficient in their recognition of muramyl dipeptide. Notably, peripheral blood mononuclear cells from individuals homozygous for the major disease-associated L1007fsinsC NOD2 mutation responded to lipopolysaccharide but not to synthetic muramyl dipeptide. Thus, NOD2 mediates the host response to bacterial muropeptides derived from peptidoglycan, an activity that is important for protection against Crohn's disease. Because muramyl dipeptide is the essential structure of peptidoglycan required for adjuvant activity, these results also have implications for understanding adjuvant function and effective vaccine development. 相似文献
3.
Weichart D Gobom J Klopfleisch S Häsler R Gustavsson N Billmann S Lehrach H Seegert D Schreiber S Rosenstiel P 《The Journal of biological chemistry》2006,281(4):2380-2389
NOD2, a cytosolic receptor for the bacterial proteoglycan fragment muramyl dipeptide (MDP), plays an important role in the recognition of intracellular pathogens. Variants in the bacterial sensor domain of NOD2 are genetically associated with an increased risk for the development of Crohn disease, a human chronic inflammatory bowel disease. In the present study, global protein expression changes after MDP stimulation were analyzed by two-dimensional PAGE of total protein extracts of human cultured cells stably transfected with expression constructs encoding for wild type NOD2 (NOD2(WT)) or the disease-associated NOD2 L1007fsinsC (NOD2(SNP13)) variant. Differentially regulated proteins were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) peptide mass fingerprinting and MALDI MS/MS. The limited overlap in the responses of the NOD2-overexpressing cell lines to MDP included a down-regulation of heat shock 70-kDa protein 4. A complex pro-inflammatory program regulated by NOD2(WT) that encompasses a regulation of key genes involved in protein folding, DNA repair, cellular redox homeostasis, and metabolism was observed both under normal growth conditions and after stimulation with MDP. By using the comparison of NOD2(WT) and disease-associated NOD2(SNP13) variant, we have identified a proteomic signature pattern that may further our understanding of the influence of genetic variations in the NOD2 gene in the pathophysiology of chronic inflammatory bowel disease. 相似文献
4.
5.
6.
7.
8.
Activation of nuclear transcription factor kappa B (NF-kappaB) is essential for dopamine-induced apoptosis in PC12 cells 总被引:6,自引:0,他引:6
The etiology of Parkinson's disease is still unknown, though current investigations support the notion of the pivotal involvement of oxidative stress in the process of neurodegeneration in the substantia nigra (SN). In the present study, we investigated the molecular mechanisms underlying cellular response to a challenge by dopamine, one of the local oxidative stressors in the SN. Based on studies showing that nuclear factor kappa B (NF-kappaB) is activated by oxidative stress, we studied the involvement of NF-kappaB in the toxicity of PC12 cells following dopamine exposure. We found that dopamine (0.1-0.5 m M) treatment increased the phosphorylation of the IkappaB protein, the inhibitory subunit of NF-kappaB in the cytoplasm. Immunoblot analysis demonstrated the presence of NF-kappaB-p65 protein in the nuclear fraction and its disappearance from the cytoplasmic fraction after 2 h of dopamine exposure. Dopamine-induced NF-kappaB activation was also evidenced by electromobility shift assay using radioactive labeled NF-kappaB consensus DNA sequence. Cell-permeable NF-kappaB inhibitor SN-50 rescued the cells from dopamine-induced apoptosis and showed the importance of NF-kappaB activation to the induction of apoptosis. Furthermore, flow cytometry assay demonstrated a higher level of translocated NF-kappaB-p65 in the apoptotic nuclei than in the unaffected nuclei. In conclusion, our findings suggest that NF-kappaB activation is essential to dopamine-induced apoptosis in PC12 cells and it may be involved in nigral neurodegeneration in patients with Parkinson's disease. 相似文献
9.
TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-{kappa}B activation 总被引:1,自引:0,他引:1
FRET experiments utilizing confocal microscopy or flow cytometry assessed homo- and heterotrimeric association of human tumor necrosis factor receptor-associated factors (TRAF) in living cells. Following transfection of HeLa cells with plasmids expressing CFP- or YFP-TRAF fusion proteins, constitutive homotypic association of TRAF2, -3, and -5 was observed, as well as heterotypic association of TRAF1-TRAF2 and TRAF3-TRAF5. A novel heterotypic association between TRAF2 and -3 was detected and confirmed by immunoprecipitation in Ramos B cells that constitutively express both TRAF2 and -3. Experiments employing deletion mutants of TRAF2 and TRAF3 revealed that this heterotypic interaction minimally involved the TRAF-C domain of TRAF3 as well as the TRAF-N domain and zinc fingers 4 and 5 of TRAF2. A novel flow cytometric FRET analysis utilizing a two-step approach to achieve linked FRET from CFP to YFP to HcRed established that TRAF2 and -3 constitutively form homo- and heterotrimers. The functional importance of TRAF2-TRAF3 heterotrimerization was demonstrated by the finding that TRAF3 inhibited spontaneous NF-kappaB, but not AP-1, activation induced by TRAF2. Ligation of CD40 on Ramos B cells by recombinant CD154 caused TRAF2 and TRAF3 to dissociate, whereas overexpression of TRAF3 in Ramos B cells inhibited CD154-induced TRAF2-mediated activation of NF-kappaB. Together, these results reveal a novel association between TRAF2 and TRAF3 that is mediated by unique portions of each protein and that specifically regulates activation of NF-kappaB, but not AP-1. 相似文献
10.
11.
Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion 总被引:3,自引:0,他引:3
Rosenstiel P Sina C End C Renner M Lyer S Till A Hellmig S Nikolaus S Fölsch UR Helmke B Autschbach F Schirmacher P Kioschis P Hafner M Poustka A Mollenhauer J Schreiber S 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(12):8203-8211
Mucosal epithelial cell layers are constantly exposed to a complex resident microflora. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by pathogen binding. This report describes the regulation and function of DMBT1 in intestinal epithelial cells, which form the primary immunological barrier for invading pathogens. We report that intestinal epithelial cells up-regulate DMBT1 upon proinflammatory stimuli (e.g., TNF-alpha, LPS). We demonstrate that DMBT1 is a target gene for the intracellular pathogen receptor NOD2 via NF-kappaB activation. DMBT1 is strongly up-regulated in the inflamed intestinal mucosa of Crohn's disease patients with wild-type, but not with mutant NOD2. We show that DMBT1 inhibits cytoinvasion of Salmonella enterica and LPS- and muramyl dipeptide-induced NF-kappaB activation and cytokine secretion in vitro. Thus, DMBT1 may play an important role in the first line of mucosal defense conferring immune exclusion of bacterial cell wall components. Dysregulated intestinal DMBT1 expression due to mutations in the NOD2/CARD15 gene may be part of the complex pathophysiology of barrier dysfunction in Crohn's disease. 相似文献
12.
Calreticulin (CRT) was isolated and identified as a protein in rabbit kidney RK(13) cells that binds the apoptogenic bacterial cell wall (BCW) components, muramyl dipeptide (MDP) and peptidoglycan (PG). Mannan-agarose purified RK(13) cell CRT (rCRT) selectively bound sepharose-immobilized L,D-MDP and PG, but not L,L-MDP or D,D-MDP. Purified rCRT and bovine CRT (bCRT) also bound free PG and L,D-MDP demonstrated in bioassays of RK(13) cell apoptosis. The results suggest that, in RK(13) cells, (a) CRT is a specific binding protein for both L,D-MDP and PG and (b) CRT binding L,D-MDP or PG is dependent on the stereoisomeric configuration of the dipeptide (L-alanyl-D-isoglutamine) moiety. In addition, the results also suggest that, in RK(13) cells, the binding of L,D-MDP, L,L-MDP, D,D-MDP, or PG to CRT correlates with their capacities of inducing apoptosis. 相似文献
13.
Mustonen H Hietaranta A Puolakkainen P Kemppainen E Paimela H Kiviluoto T Kivilaakso E 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(6):G1614-G1621
Ethanol is a well-established irritant inducing inflammation in gastric mucosa, but the effects at the cellular level remain unclear. This study investigates NF-kappaB activation in gastric mucosal cells by ethanol and assesses the effects of heat shock pretreatment in this ulcerogenic situation. Rat gastric mucosal epithelia were exposed to ethanol for different time periods. Heat shock was induced by incubating the cells at 42 degrees C for 1 h prior to the experiments. For evaluation of NF-kappaB activation, the nuclear fraction of the cell lysates was analyzed with an EMSA or an ELISA-based assay. Caspase-3 (a promoter of apoptosis) activity was measured with a time-resolved fluorescence based assay, cell viability with a tetrazolium assay, and cell membrane integrity with a LDH assay. Ethanol (1-5%) induced NF-kappaB activation, reaching a maximum after 3 h, and also led to moderately increased COX-2 expression. Heat shock pretreatment and the intracellular calcium chelator BAPTA were able to inhibit ethanol-induced NF-kappaB activation. Heat shock pretreatment decreased ethanol-induced caspase-3 activation, decreased cell membrane damage, and retained cellular viability. Inhibition of NF-kappaB activation by NEMO-binding peptide, by decreasing RelA expression, or by inhibiting COX-2 activity by CAY-14040 promoted the effects of ethanol, such as increased caspase-3 activity and decreased cell viability. In conclusion, ethanol induces NF-kappaB activation via a calcium-dependent pathway and induces COX-2 expression. Inhibition of the NF-kappaB activation or COX-2 activity potentiates apoptosis and cell damage induced by ethanol, suggesting a protective role for NF-kappaB activation and COX-2 expression. 相似文献
14.
Nuclear factor kappa B (NF-κB) plays a prominent role in the pathogenesis of infectious diseases. Staphylococcus aureus (S. aureus), which can attach to and invade human osteoblasts, is the most common causative agent of osteomyelitis. To determine whether S. aureus can activate NF-κB in human osteoblasts and explore the possible factors of activation in response to infection, we used flow cytometry, enzyme-linked immunosorbent assay, immunoblots, and electrophoretic mobility shift assays to quantify the invasion of bacteria, to measure the interleukin-6 (IL-6) of culture supernatants, and to investigate the IκBα degradation and NF-κB activation in human osteoblasts. Moreover, we explored the possible factors responsible for the activation of NF-κB by preventing S. aureus from physically touching human osteoblasts or inhibiting the invasion of S. aureus into human osteoblasts under co-culture conditions, by incubating proteinase K-treated or ultraviolet-killed S. aureus with human osteoblasts and by treating human osteoblasts with peptidoglycan (PGN) or lipoteichoic acid (LTA). We found that S. aureus induced the IκBα degradation and NF-κB activation, which could regulate IL-6 secretion in the culture supernatants of human osteoblasts in response to infection. In addition, the maximal IκBα degradation and NF-κB activation in human osteoblasts occurred prior to the maximal invasion of S. aureus. It was the attachment not invasion or the secreted soluble factor(s), PGN, LTA of S. aureus, that could induce the IκBα degradation and NF-κB activation in human osteoblasts. These results indicated that S. aureus can activate NF-κB in human osteoblasts and that the attachment of S. aureus is required for this activation in response to infection. 相似文献
15.
Human osteoclast formation from monocyte precursors under the action of receptor activator of nuclear factor-kappaB ligand (RANKL) was suppressed by granulocyte macrophage colony-stimulating factor (GM-CSF), with down-regulation of critical osteoclast-related nuclear factors. GM-CSF in the presence of RANKL and macrophage colony-stimulating factor resulted in mononuclear cells that were negative for tartrate-resistant acid phosphatase (TRAP) and negative for bone resorption. CD1a, a dendritic cell marker, was expressed in GM-CSF, RANKL, and macrophage colony-stimulating factor-treated cells and absent in osteoclasts. Microarray showed that the CC chemokine, monocyte chemotactic protein 1 (MCP-1), was profoundly repressed by GM-CSF. Addition of MCP-1 reversed GM-CSF suppression of osteoclast formation, recovering the bone resorption phenotype. MCP-1 and chemokine RANTES (regulated on activation normal T cell expressed and secreted) permitted formation of TRAP-positive multinuclear cells in the absence of RANKL. However, these cells were negative for bone resorption. In the presence of RANKL, MCP-1 significantly increased the number of TRAP-positive multinuclear bone-resorbing osteoclasts (p = 0.008). When RANKL signaling through NFATc1 was blocked with cyclosporin A, both MCP-1 and RANTES expression was down-regulated. Furthermore, addition of MCP-1 and RANTES reversed the effects of cyclosporin A and recovered the TRAP-positive multinuclear cell phenotype. Our model suggests that RANKL-induced chemokines are involved in osteoclast differentiation at the stage of multinucleation of osteoclast precursors and provides a rationale for increased osteoclast activity in inflammatory conditions where chemokines are abundant. 相似文献
16.
17.
Michalski CW Selvaggi F Bartel M Mitkus T Gorbachevski A Giese T Sebastiano PD Giese NA Friess H 《American journal of physiology. Gastrointestinal and liver physiology》2008,294(1):G50-G57
Although it is recognized that neurogenic influences contribute to progression of chronic inflammatory diseases, the molecular basis of neuroimmune interactions in the pathogenesis of chronic pancreatitis (CP) is not well defined. Here we report that responsiveness of peripheral blood mononuclear cells (PBMC) to the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is altered in CP. Expression of PACAP and its receptors in human CP was analyzed with quantitative RT-PCR, laser-capture microdissection, and immunohistochemistry. Regulation of PACAP expression was studied in coculture systems using macrophages and acinar cells. Responsiveness of donor and CP PBMC to PACAP was determined based on cytokine profiles and NF-kappaB activation of LPS- or LPS+PACAP-exposed cells. Although donor and CP PBMC responded equally to LPS, PACAP-mediated counteraction of LPS-induced cytokine response was switched from inhibiting TNF-alpha to decreasing IL-1beta and increasing IL-10 secretion. The change of PACAP-mediated anti-inflammatory pattern was associated with altered activation of NF-kappaB: compared with LPS alone, a combination of LPS and PACAP had no effect on NF-kappaB p65 nuclear translocation in CP PBMC, whereas NF-kappaB was significantly decreased in donor PBMC. According to laser-capture microdissection and coculture experiments, PBMC also contributed to generation of a PACAP-rich intrapancreatic environment by upregulating PACAP expression in macrophages encountering apoptotic pancreatic acini. The nociceptive status of CP patients correlated with pancreatic PACAP levels and with IL-10 bias of PACAP-exposed CP PBMC. Thus the ability of PBMC to produce and to respond to PACAP might influence neuroimmune interactions that regulate pain and inflammation in CP. 相似文献
18.
19.
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been shown to reduce the progression of renal disease
independent of cholesterol-lowering effect, but the mechanism of potential protective effect remains unclear. Here, we investigate
the effect of fluvastatin on activation of nuclear factor-κB (NF-κB) induced by angiotensin II (AngII) in rat kidney tubule
epithelial cells (NRK-52E). Electrophoretic mobility shift assays (EMSA) was used to detect NF-κB activation. Phosphorylation
of cellular p38 mitogen-activated protein kinase (p38MAPK) was determined by western blot analysis. AngII stimulated the DNA-binding
activity of NF-κB and phosphorylation of p38MAPK in cultured NRK-52E cells in a dose-dependent (10−9–10−6 mol/l) manner (P < 0.01). AngII (10−6 mol/l) induced a rapid (5 min) increase of the p38MAPK phosphorylation. NF-κB DNA-binding activity was increased at as early
as 30 min, peaked at 2 h after AngII treatment. This stimulatory effect of AngII on NF-κB was blocked by SB203580 (a specific
inhibitor of p38MAPK). Incubation of cells with fluvastatin significantly inhibited the AngII-induced NF-κB activation in
a dose-dependent (10−7–10−5 mol/l) manner (P < 0.05). Exogenous mevalonate (10−4mol/l) prevented the effect of fluvastatin on NF-κB activation. These results suggest the fluvastatin reduced AngII-induced
NF-κB activation via the p38MAPK pathway in NRK-52E cells. The effect is at least partly due to blocking the biosynthesis
of mevalonate. 相似文献