首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The lungs of four species of bats, Phyllostomus hastatus (PH, mean body mass, 98 g), Pteropus lylei (PL, 456 g), Pteropus alecto (PA, 667 g), and Pteropus poliocephalus (PP, 928 g) were analysed by morphometric methods. These data increase fivefold the range of body masses for which bat lung data are available, and allow more representative allometric equations to be formulated for bats. 2. Lung volume ranged from 4.9 cm3 for PH to 39 cm3 for PP. The volume density of the lung parenchyma (i.e. the volume proportion of the parenchyma in the lung) ranged from 94% in PP to 89% in PH. Of the components of the parenchyma, the alveoli composed 89% and the blood capillaries about 5%. 3. The surface area of the alveoli exceeded that of the blood-gas (tissue) barrier and that of the capillary endothelium whereas the surface area of the red blood cells as well as that of the capillary endothelium was greater than that of the tissue barrier. PH had the thinnest tissue barrier (0.1204 microns) and PP had the thickest (0.3033 microns). 4. The body mass specific volume of the lung, that of the volume of pulmonary capillary blood, the surface area of the blood-gas (tissue) barrier, the diffusing capacity of the tissue barrier, and the total morphometric pulmonary diffusing capacity in PH all substantially exceeded the corresponding values of the pteropid species (i.e. PL, PA and PP). This conforms with the smaller body mass and hence higher unit mass oxygen consumption of PH, a feature reflected in the functionally superior gas exchange performance of its lungs. 5. Morphometrically, the lungs of different species of bats exhibit remarkable differences which cannot always be correlated with body mass, mode of flight and phylogeny. Conclusive explanations of these pulmonary structural disparities in different species of bats must await additional physiological and flight biomechanical studies. 6. While the slope, the scaling factor (b), of the allometric equation fitted to bat lung volume data (b = 0.82) exceeds the value for flight VO2max (b = 0.70), those for the surface area of the blood-gas (tissue) barrier (b = 0.74), the pulmonary capillary blood volume (b = 0.74), and the total morphometric lung diffusing capacity for oxygen (b = 0.69) all correspond closely to the VO2max value. 7. Allometric comparisons of the morphometric pulmonary parameters of bats, birds and non-flying mammals reveal that superiority of the bat lung over that of the non-flying mammal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The lungs of five female domestic Muscovy ducks, mean body weight 1.627 kg, total lung volume 48.07 cm3, were analysed by standard morphometric methods. Principal results obtained are: lung volume per unit body weight, 30.17 cm3/g; volume densities of exchange tissue relative to lung volume, 49.24%, blood capillaries relative to exchange tissue, 29.63%, tissue of the blood gas (tissue) barrier relative to exchange tissue, 5.88%; surface area of the blood-gas (tissue) barrier per unit body weight, 30.04 cm2/g; ratios of the surface area of the blood-gas (tissue) barrier per unit volume of the lung and per unit volume of exchange area, 979 cm2/cm3 and 200.06 mm2/mm3, respectively; harmonic and arithmetic mean thicknesses of the tissue barrier, 0.199 μm and 0.303 μm, respectively. The anatomical diffusing capacity of the tissue barrier for oxygen ( DtO2 ) and the total pulmonary diffusing capacity ( DLO2 ), 49.58 ml O2/min/mmHg/kg and 4.55 ml O2/min/mm Hg/kg, respectively. The lungs of the domestic Muscovy duck appear to be about as well adapted anatomically for gas exchange as the lungs of wild anatid species, and there is no clear evidence that domestication has been associated with any deterioration in the anatomical capacity for oxygen uptake. The weight-specific anatomical diffusing capacity of the lung for oxygen ( DLO2/W ) was about 3.6 times greater than the weight-specific physiological value, a factor which falls within the expected range.  相似文献   

3.
Comprehensive pulmonary morphometric data from 42 species of birds representing ten orders were compared with those of other vertebrates, especially mammals, relating the comparisons to the varying biological needs of these avian taxa. The total lung volume was strongly correlated with body mass. The volume density of the exchange tissue was lowest in the charadriiform and anseriform species and highest in the piciform, cuculiform and passeriform species. The surface area of the blood-gas (tissue) barrier, the volume of the pulmonary capillary blood and the total morphometric pulmonary diffusing capacity were all strongly correlated with body mass. The harmonic mean thickness of both the blood-gas (tissue) barrier and the plasma layer were weakly correlated with body mass. The mass-specific surface area of the blood-gas (tissue) barrier (surface area per gram body mass) and the surface density of the blood-gas (tissue) barrier (i.e. its surface area per unit volume of exchange tissue) were inversely correlated (though weakly) with body mass. The passeriform species exhibited outstanding pulmonary morphometric adaptations leading to a high specific total diffusing capacity per gram body mass, consistent with the comparatively small size and energetic mode of life which typify passeriform birds. The relatively inactive, ground-dwelling domestic fowl (Gallus gallus) had the lowest pulmonary diffusing capacity per gram body mass. The specific total lung volume is about 27% smaller in birds than in mammals but the specific surface area of the blood-gas (tissue) barrier is about 15% greater in birds. The ratio of the surface area of the tissue barrier to the volume of the exchange tissue was also much greater in the birds (170-305%). The harmonic mean thickness of the tissue barrier was 56-67% less in the birds, but that of the plasma layer was about 66% greater in the birds. The pulmonary capillary blood volume was also greater (22%) in the birds. Except for the thickness of the plasma layer, these morphometric parameters all favour the gas exchange capacity of birds. Consequently, the total specific mean morphometric pulmonary diffusing capacity for oxygen was estimated to be about 22% greater in birds than in mammals of similar body mass. This estimate was obtained by employing oxygen permeation constants for mammalian tissue, plasma and erythrocytes, as avian constants were not then available.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The lungs of two adult species of bat Epomophorus wahlbergi and Miniopterus minor fixed with 2.3% glutaraldehyde were processed for SEM (scanning electron microscope) and TEM (transmission electron microscope) examination by the standard procedures. The bat lung comprised a blood and air conducting zone (consisting of bronchi, bronchioles and large blood vessels), the intermediate zone (made up of alveolar ducts), and the respiratory zone, which consisted of alveoli and blood capillaries. The interalveolar septa comprised basically granular pneumocytes (type II cells), squamous pneumocytes (type I cells), endothelial cells, and, in the interstitium, collagen and elastic fibres with occasional fibrocytes. Blood capillaries were interposed in the interalveolar septa, thus bulging into adjacent alveoli. It was noted that grossly, architecturally and structurally, the bat lung was similar to that of a terrestrial mammal. However, in previous morphometric and physiological studies it has been found that bats have a large lung, a thin pulmonary blood-gas barrier, a large pulmonary capillary blood volume, and high haematocrit and haemoglobin concentration. The bat lung, while retaining the basic mammalian pulmonary design, is well adapted to provide the large amount of oxygen demanded by flight. The avian pulmonary design (the lung-air sac system) is thus not a prerequisite to flight.  相似文献   

5.
Maina JN 《Tissue & cell》2004,36(2):129-139
Formation of a thin blood-gas barrier in the respiratory (gas exchange) tissue of the lung of the domestic fowl, Gallus gallus variant domesticus commences on day 18 of embryogenesis. Developing from infundibulae, air capillaries radiate outwards into the surrounding mesenchymal (periparabronchial) tissue, progressively separating and interdigitating with the blood capillaries. Thinning of the blood-gas barrier occurs by growth and extension of the air capillaries and by extensive disintegration of mesenchymal cells that constitute transient septa that divide the lengthening and anastomosing air capillaries. After they contact, the epithelial and endothelial cells deposit intercellular matrix that cements them back-to-back. At hatching (day 21), with a thin blood-gas barrier and a large respiratory surface area, the lung is well prepared for gas exchange. In sites where air capillaries lie adjacent to each other, epithelial cells contact directly: intercellular matrix is lacking.  相似文献   

6.
The wall of the asymmetrical saclike lungs of the fishes Polypterus and Erpetoichthys consists of several functionally different tissue layers. Their lumen is lined by a surface epithelium composed of (1) highly attenuated cells, termed pneumocytes I; (2) pneumocytes II with lamellar bodies, presumably indicating surfactant production; (3) mucous cells; and (4) ciliated cells. Underlying the pneumocytes I is a dense capillary net. The thin continuous endothelium of this net, together with the pneumocytes I, constitute the very thin blood-air barrier. The basement membrane of epithelium and endothelium fuse in the area of the blood-air barrier (thickness 210 m?m). Secretory and ciliary cells form longitudinal rows in the epithelium. Below the zone with a gas-exchanging tissue, a layer of connective tissue containing collagen and special elastic fibers occurs. The blood vessels that give rise to or drain the superficial capillary plexus are located in this connective tissue. The outermost layer of the lung consists of muscle cells, a narrow inner zone with smooth muscle cells, and an outer, broader zone with cross-striated muscle cells. The lung is innervated by myelinated and nonmyelinated nerve fibers. The morphology of the gas-exchange tissue in the lungs of these primitive bony fish is fundamentally very similar to that of the lungs of tetrapod vertebrates. The morphologic observations are in close agreement with physiologic data, disclosing well-developed respiratory capacities. Structural simplicity can be regarded as a model from which the lungs of the higher vertebrates derived. In addition to respiratory function, the lungs seem also to have hydrostatic tasks.  相似文献   

7.
Type I cell-like morphology in tight alveolar epithelial monolayers   总被引:7,自引:0,他引:7  
The pulmonary alveolar epithelium separates air spaces from a fluid-filled interstitium and might be expected to exhibit high resistance to fluid and solute movement. Previous studies of alveolar epithelial barrier properties have been limited due to the complex anatomy of adult mammalian lung. In this study, we characterized a model of isolated alveolar epithelium with respect to barrier transport properties and cell morphology. Alveolar epithelial cells were isolated from rat lungs and grown as monolayers on tissue culture-treated Nuclepore filters. On Days 2-6 in primary culture, monolayers were analyzed for transepithelial resistance (Rt) and processed for electron microscopy. Mean cell surface area and arithmetic mean thickness (AMT) were determined using morphometric techniques. By Day 5, alveolar epithelial cells in vitro exhibited morphologic characteristics of type I alveolar pneumocytes, with thin cytoplasmic extensions and protruding nuclei. Morphometric data demonstrated that alveolar pneumocytes in vitro develop increased surface area and decreased cytoplasmic AMT similar to young type I cells in vivo. Concurrent with the appearance of type I cell-like morphology, monolayers exhibited high Rt (greater than 1000 omega.cm2), consistent with the development of tight barrier properties. These monolayers of isolated alveolar epithelial cells may reflect the physiological and morphological properties of the alveolar epithelium in vivo.  相似文献   

8.
Ultrastructural and morphometric investigations were performed on the lung of the European salamander, Salamandra salamandra L. Folds of first and second order are covered with a ciliated epithelium containing goblet cells. The respiratory surface of the lung is lined by a single type of cell which, in amphibians, combines features of type I and type II alveolar cells of the mammalian lung. In the salamander the respiratory and ciliated epithelial cells as well as goblet cells possess electron dense and lucent vesicles in their cytoplasm as well as lamellar bodies. A small amount of surfactant, composed most probably of phospholipids and mucopolysaccharides, was observed covering the entire inner surface of the lung. Morphometric methods were used to determine the dimensions of the perinuclear region of pneumocytes, the thickness of the air-blood barrier and lung wall, and also the diameter of capillaries. The thickness of the respiratory air-blood barrier was found to be considerably higher than that of the corresponding barrier in mammals.  相似文献   

9.
To determine whether all-trans retinoic acid (RA) enhances compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 4 mo, the remaining lung was fixed by tracheal instillation of fixatives at a constant airway pressure for detailed morphometric analysis. After RA treatment compared with placebo, lung volume was slightly but not significantly lower. Volume density of septum to lung was 37% higher because of a 50 and 25% higher volume density of capillary and septal tissue, respectively. Mean septal thickness was 27% higher. Absolute volumes of endothelial cells and capillary blood were 31-37% higher, whereas epithelial and interstitial volumes were not different between groups. Absolute alveolar-capillary surface areas did not differ between groups, and alveolar septal surface-to-volume ratio was 20% lower in RA-treated animals. RA treatment exaggerated interlobar differences in morphometric indexes and caused alveolar capillary morphology to revert to a more immature state. Thus RA treatment during early post-R-PNX adaptation preferentially enhanced alveolar capillary and endothelial cell volumes consistent with formation of new capillaries, but the associated septal distortion precluded a corresponding increase in gas-exchange surface or morphometric estimates of lung diffusing capacity.  相似文献   

10.
The lungs of the New Caldeonian gecko Rhacodactylus leachianus were examined by means of gross dissection and light and electron microscopy. This tropical species, which is the largest living gecko, possesses two simple, single-chambered lungs. Right and left lungs are of similar size and shape. The lung volume (27.2 ml.100 g-1) is similar to that of the tokay (Gekko gecko) but differs in that the gas exchange tissue is approximately homogeneously distributed, and the parenchymal units (ediculae) are very large, approximately 2 mm in diameter. The parenchymal depth varies according to the location in the lung, being deepest near the middle of the lung and shallowest caudally. Scanning and transmission electron microscopy reveal an unusual distribution of ciliated cells in patches on the edicular walls as well as on the trabeculae. Secretory cells are very numerous, particularly in the bronchial epithelium, where they greatly outnumber the ciliated cells. The secretory cells form a morphological continuum characterized by small secretory droplets apically and large vacuoles basally. This continuum includes cells resembling type II pneumocytes but which are devoid of lamellar bodies. Type I pneumocytes similar to those of other reptiles cover the respiratory capillaries, where they form a thin, air-blood barrier together with the capillary endothelial cells and the fused basement laminae. The innervation, musculature, and vascular distribution in R. leachianus are also characterized. Apparent simplification of the lungs in this taxon may be related to features of its sluggish habits, whereas peculiarities of cell and tissue composition may reflect demands of its mesic habitat.  相似文献   

11.
Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the respiratory organs of nonavian theropod dinosaurs and the lung-air sac system of birds appear to have evolved. However, many fundamental aspects of the evolution, development, and even the structure and function of the avian respiratory system still remain uncertain.  相似文献   

12.
BACKGROUND: The polycationic vector polyethylenimine (PEI) has been shown to be a powerful agent for transfecting the mouse lung after injection of plasmid-based polyplexes through the tail vein. These findings raise therapeutic prospects for a number of lung conditions. For such potentials to be realised, the precise identity of the transfected cells remains to be determined; however, so far, no ultrastructural analysis has been performed on PEI-transfected lungs. The definition of which pulmonary cells are transfected is particularly critical for certain pulmonary diseases which might require transfection of defined cell types such as epithelial cells for cystic fibrosis (CF). METHODS: Here, we use a combination of light and electron microscopy to determine which cells are transfected in the lung after PEI-mediated gene delivery through the intravenous route. Furthermore, we extend the same experimental setting to a mouse model of CF to provide proof of principle that this approach can be used in genetic models of the disease. RESULTS: We show that within 18-20 h after injection through the tail vein, DNA/PEI complexes have already crossed the capillary barrier resulting in high levels of expression of reporter genes in the lungs. Transgene expression is observed in endothelial cells, in type I and type II pneumocytes, and in septal cells. Coexpression of the transgene and of the endogenous CF transmembrane conductance regulator (CFTR) gene is observed in some of the targeted epithelial cells. Levels and sites of expression are similar in normal and in CFTR-mutant mice. CONCLUSIONS: The results demonstrate that PEI-mediated gene delivery leads to transfection of epithelial cells beyond the endothelial barrier and show that this method can be used for lung gene delivery in CF fragile mutant mice.  相似文献   

13.
Morphogenesis of the respiratory bronchiole in rhesus monkey lungs   总被引:1,自引:0,他引:1  
The epithelium of the respiratory bronchiole in the adult rhesus monkey consists of two populations: a pseudostratified epithelium with basal, mucous goblet, and ciliated cells located near the pulmonary artery (PA); and a simple cuboidal epithelium composed only of nonciliated bronchiolar epithelial (or Clara) cells in areas away from the PA. This study describes the pattern of differentiation of these two epithelial populations, and their relationship to the PA and to the time of appearance of alveoli in the respiratory bronchiole of the rhesus monkey during the period of 90-125 days gestational age (DGA). These events were related to changes in the adjacent parenchyma. Dissected airways of infusion-fixed, critical-point-dried lungs were evaluated by scanning microscopy followed by light microscopy of the same airways. At 54% of gestation (90 DGA), the distal airway was lined by a mixture of ciliated and nonciliated cells. By 67% of gestation (110 DGA), the ciliated cells were confined to the epithelium over the PA. The underlying connective tissue initially was cellular containing few fibers but was fibrous by 76% of gestation (125 DGA). Alveolarization began near the most distal cartilage at 57% of gestation (95 DGA), the same period at which secondary septation occurred in the distal acinus. Thus, alveolarization occurred simultaneously in two centers: 1) the proximal centriacinar region in the vicinity of the most distal cartilage and 2) the distal lung parenchyma. The duration of centriacinar alveolarization was short, approximately 5 days.  相似文献   

14.
Light microscopy as well as scanning and transmission electron microscopy revealed the lungs of loggerhead sea turtle (Caretta caretta), hatchlings to be multichambered with several separate open chambers communicating with a cartilage-reinforced central intrapulmonary bronchus. This central bronchus is structurally analogous to an oversized mammalian respiratory bronchiole. The subsequent branching airways, chambers and niches, are in many ways structurally and functionally similar to mammalian alveolar ducts and alveolar sacs, respectively. The airways are lined by a pseudostratified, columnar epithelium comprised of ciliated, nonciliated secretory, and basal cells. Histochemically, the epithelium is found to contain cells secreting both sialomucins and sulfomucins, as well as a neutral serous secretion. Small granule cells, a type of neuroendocrine cell similar to those seen in mammals, are scattered among the other airway cells. The gas-exchange areas, termed ediculae, are lined by the respiratory type I and type II pneumocytes, as in mammals. Abundant smooth muscle is seen in the trabeculae and interedicular septa of the lung tissue. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Structural aspects of gas exchange   总被引:1,自引:0,他引:1  
The lung is composed of several million small air spaces, lined by a delicate tissue membrane separating air from capillary blood. The design features of the gas exchange region in the lung are optimal for gaseous diffusion, by having a very extensive contact surface but with a minimal tissue barrier composed of an epithelial and endothelial layer separating an interstitial layer. The extent of the gas exchange surface in adult lungs is determined by general maturation which in turn is influenced by metabolic requirements of the organism. Environmental factors can modulate the pattern of ultimate lung development. Lung inflation causes air spaces to expand mainly by a process of tissue unfolding beneath an extremely thin layer of alveolar surfactant. This ensures cellular integrity during extreme deformations while at the same time providing a reserve of gas exchange surface so that functional diffusion capacity at all lung volumes is less than the structural maximum.  相似文献   

16.
ICAM-1 is an intercellular adhesion molecule of the immunoglobulin supergene family involved in adherence of leukocytes to the endothelium and in leukocytic accumulation in pulmonary injury. In the current study, the antigen retrieval technique was used to detect ICAM-1 immunohistochemically in paraffin sections of lungs from human, mouse and rat as well as in bleomycin- or radiation-induced fibrotic lungs from rat and human. In normal lung tissue, the expression of ICAM-1 on alveolar type I epithelial cells is stronger than on alveolar macrophages and on endothelial cells. Preembedding immuno-electron microscopy of normal rat, mouse and human lung samples revealed sclective ICAM-1 expression on the surface of type I alveolar epithelial cells and, to a lesser extent, on the pulmonary capillary endothelium and on alveolar macrophages. In fibrotic specimens, both focal lack and strengthening of immunostaining on the surface of type I cells was found. Alveolar macrophages were found focally lacking ICAM-1 immunoreactivity. In some cases, rat type II pneumocytes exhibited positive immunoreactions for ICAM-1. Immunoelectron microscopy with preembedded rat lungs (bleomycin-exposed cases) confirmed the altered ICAM-1 distribution at the alveolar epithelial surface. In the alveolar fluid of fibrotic rat lungs, in contrast to that from untreated controls, soluble ICAM-1 was detected by western blot analysis.  相似文献   

17.
The lungs provide a large inner surface to guarantee respiration. In lung alveoli, a delicate membrane formed by endo- and epithelial cells with their fused basal lamina ensures rapid and effective gas exchange between alveolar and vascular compartments while concurrently forming a robust barrier against inhaled particles and microbes. However, upon infectious or sterile inflammatory stimulation, tightly regulated endothelial barrier leakiness is required for leukocyte transmigration. Further, endothelial barrier disruption may result in uncontrolled extravasation of protein-rich fluids. This brief review summarizes some important mechanisms of pulmonary endothelial barrier regulation and disruption, focusing on the role of specific cell populations, coagulation and complement cascades and mediators including angiopoietins, specific sphingolipids, adrenomedullin and reactive oxygen and nitrogen species for the regulation of pulmonary endothelial barrier function. Further, current therapeutic perspectives against development of lung injury are discussed.  相似文献   

18.
Fibrosing alveolitis is a disease with inflammatory, proliferative, and fibrotic components. In different models, it has been shown that the cytokine interleukin-10 (IL-10) plays a conflicting role in inflammation-associated fibrotic processes, inasmuch as it is an anti-inflammatory cytokine but also a TH2 cytokine with inherent pro-fibrotic effects. IL-10 is produced primarily by inflammatory cells. In this report, we show in a rat model of radiation-induced fibrosing alveolitis that IL-10 is also produced by type I alveolar epithelial cells in both normal and fibrotic lungs. The total amount of IL-10 in the lung is increased after irradiation, but type I pneumoyctes contain less IL-10. The R3/1 permanent type I pneumocyte cell line also contains IL-10, which is reduced after irradiation. Whereas in the normal lung, the entire alveolar surface is covered by IL-10-producing pneumocytes, this continuity is interrupted in fibrotic lungs, because type I pneumocytes lack full differentiation and thus full spreading over the alveolar surface. The exposure of the IL-10-negative epithelial basal membrane may allow for an easier attachment of inflammatory cells such as alveolar macrophages. These cells have the potential to act in a pro-inflammatory way by tumor necrosis factor alpha and also in a pro-fibrotic way by activating TH2 cytokines.  相似文献   

19.
The combined techniques of light microscopy, scanning (SEM) and transmission (TEM) electron microscopy were used for the first time to study the structure of unicameral lungs of a Tegu lizard (Tupinambis nigropunctatus). The lungs are prolate spheroid bags with blood supplied by superficial branches of a dorsal pulmonary artery and returned by diffuse, more deeply located veins. The primary bronchus enters the medial aspect near the apex of the lung. The lung wall is composed of trabeculae: (1) arranged in a faviform pattern, (2) forming individual faveoli (gas exchange chambers) which appear deepest in the cranial one-half of the lung, (3) all of which have a smooth muscle core overlain by either a ciliated or nonciliated epithelium. A ciliated epithelium lines the luminal surfaces of the large primary trabeculae and parts of smaller secondary trabeculae; it is composed of cone-shaped cells with ciliated-microvillous surfaces, and of columnar serous secreting cells. Nonciliated epithelium covers the luminal surface of portions of some secondary trabeculae, abluminal surfaces of primary and secondary trabeculae and all surfaces of the small tertiary trabeculae forming the faveoli. The nonciliated epithelium overlies an extensive superficial capillary network. The blood-gas barrier (0.7-1.0 μm thick) is composed of a thin cytoplasmic flange of Type I pneumonocytes, a thick homogeneous basal lamina and an attenuated endothelial cytoplasm. Numerous surfactant-producing Type II pneumonocytes are closely associated with the Type I pneumonocytes. The nonrespiratory ciliated epithelium may function in humidification of air and clearing of the lungs.  相似文献   

20.
The purpose of the present study was to characterize ultrastructurally the nonolfactory nasal epithelium of a nonhuman primate, the bonnet monkey. Nasal cavities from eight subadult bonnet monkeys were processed for light microscopy, and scanning and transmission electron microscopy. Nonolfactory epithelium covered the majority of the nasal cavity and consisted of squamous (SE), transitional (TE), and respiratory epithelium (RE). Stratified SE covered septal and lateral walls of the nasal vestibule, while ciliated pseudostratified RE covered most of the remaining nasal cavity. Stratified, nonciliated TE was present between SE and RE in the anterior nasal cavity. This epithelium was distinct from the other epithelial populations in abundance and types of cells present. TE was composed of lumenal nonciliated cuboidal cells, goblet cells, small mucous granule (SMG) cells, and basal cells, while RE contained ciliated cells, goblet cells, SMG cells, basal cells, and cells with intracytoplasmic lumina lined by cilia and microvilli. TE and RE contained similar numbers of total epithelial cells and basal cells per millimeter of basal lamina. TE was composed of more SMG cells but fewer goblet cells compared to RE. We conclude that nonolfactory nasal epithelium in the bonnet monkey is complex with distinct regional epithelial populations which must be recognized before pathologic changes within this tissue can be assessed adequately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号