首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resident, elicited, and activated mouse peritoneal macrophages exhibit a differential expression of the activity of the enzyme beta-galactosidase; freshly harvested resident macrophages express a remarkably high activity whereas the latter two populations are almost void of enzymic activity. During in vitro cultivation there is an enhancement in the level of the enzyme in the three populations, and a significant proportion of both thioglycollate-elicited and Corynebacterium parvum-activated macrophages acquire beta-galactosidase activity. Cells within in vitro differentiated bone marrow-derived mononuclear phagocyte colonies are heterogeneous with respect to expression of beta-galactosidase activity. The percentage of cells expressing medium to intense enzymic activity is augmented with time in culture. Essentially the same pattern is observed in colonies differentiated from bone marrows of mice bearing acute or chronic inflammation. Freshly isolated human peripheral blood monocytes are essentially void of detectable beta-galactosidase activity. Eighty to ninety percent of the monocytes acquire medium to intense activity during a 7-day cultivation period. The data support the suggestion that beta-galactosidase expression in mononuclear phagocytes is a correlate of their maturational stage both in vivo and in vitro and does not reflect the state of elicitation or activation of these cells.  相似文献   

2.
Dexamethasone, a synthetic glucocorticosteroid, was shown to modulate the colony-stimulating factor-dependent clonal growth of myeloid progenitor cells in semisolid agar cultures, enhancing the formation of granulocyte colonies (50–100%) and suppressing the formation of macrophage colonies (75–97%). Modulation of the pattern of myeloid colony formation by dexamethasone (12–125 nM) was brought about when the steroid was administered to 6-day cultures at the time of culture initiation and up to 72 hr later. Dexamethasone inhibited myeloid cell proliferation when administered to 5-day liquid cultures at culture initiation and up to 96 hr later. Dexamethasone (12–250 nM) also enhanced the phagocytic activity of bone marrow-derived mononuclear phagocytes toward heat-killed (HK) yeast cells (up to 100%) and IgG-coated sheep red blood cells (up to 60%). Enhancement of the phagocytic capability depended critically on the stage in culture at which dexamethasone was administered. Exposure to dexamethasone for 28 hr up to 96 hr of 96-hr cultures of bone marrow cells did not lead to a modulation of phagocytic activity of the developing mononuclear phagocytes. The presence of dexamethasone during the critical period of 96 hr to 120 hr after culture initiation led to an enhanced phagocytic capability, which was statistically significant already 12 hr after the administration of the glucocorticoid. Dexamethasone induced an enhanced phagocytic activity when administered at any time after culture initiation provided that it was in culture during this critical period. When added at 120 hr of culture, dexamethasone no longer enhanced the phagocytic capability of mononuclear phagocytes and when added later than 156 hr of culture suppressed it. Dexamethasone also suppressed (up to 68%) the phagocytic capability of resident and elicited peritoneal macrophages. The results suggest that glucocorticoids shift the balance of granulocyte vs. macrophage formation at early stages of precursor cell differentiation. Reduction in mononuclear phagocyte growth and enhancement of its phagocytic capability might reflect accelerated differentiation/maturation steps. The inhibitory effect of dexamethasone on macrophage formation and on the phagocytic capability of mature mononuclear phagocytes and peritoneal macrophages might be a relevant aspect of the in vivo immune suppression encountered after glucocorticoid administration.  相似文献   

3.
《The Journal of cell biology》1983,97(4):1113-1118
A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. We have defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [35S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, Ia, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow- derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WEHI-3, RAW 264.1, and MGI.D+ secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated.  相似文献   

4.
Mouse peritoneal exudate cells induced by thioglycollate medium can form colonies in soft agar with a plating efficiency of about 5% (0.6%–10%). Cells from an unstimulated peritoneal cavity form no colonies or have a plating efficiency of less than 0.001 %. These colony-forming cells from the peritoneal exudate are similar to bone marrow colony-forming cells in vitro in that they both require a substance(s) present in conditioned medium from L-cells or mouse embryo fibroblasts or the serum from endotoxin-treated mice for the initiation and the continuation of their growth. However, peritoneal exudate colony-forming cells have a much longer initial lag period (10–14 days) and can survive longer in the absence of L-cell conditioned medium than bone marrow colony-forming cells. Only mononuclear cells, presumably macrophages, are observed in peritoneal exudate colonies, whereas bone marrow cell colonies contain both polymorphonuclear cells and macrophages.  相似文献   

5.
Summary The murine peritoneal cavity contains factors that inhibit the in vitro growth and colony formation of macrophages. The inhibition of macrophage growth is not due to cell death. In the presence of inhibitors, the growth of colony-forming macrophages is suppressed, and small clusters are formed as a result of limited proliferation. The more mature mono-nuclear phagocytes (blood monocytes and peritoneal exudate macrophages) are more sensitive to the overall inhibitory effect of the peritoneal inhibitors than the less mature bone marrow mononuclear phagocytes. Furthermore, using dialysis and Amicon ultrafiltration, at least two inhibitors with differential inhibitory effects can be demonstrated. The colony formation of bone marrow mononuclear phagocytes is suppressed mainly by a protease-resistant, small molecular weight (<1,000) dialyzable inhibitor. In contrast, peritoneal exudate macrophages are sensitive to both the small molecular weight inhibitor and a protease-sensitive, large molecular weight (>12,000), nondialyzable inhibitor. The data suggest a possible existence of a dual inhibitor control on the proliferation of mononuclear phagocytes in vivo. In addition, the in vitro cultured peritoneal exudate cells are capable of producing inhibitors that mimic the activity of the in vivo inhibitors. This investigation was supported by Grants CA 09 11(SY) and AI15563(CCS) from the National Institutes of Health, Bethesda, MD  相似文献   

6.
The colony formation in spleen of lethally irradiated syngeneic or hybrid recipients was studied after transplantation of bone marrow cells, with or without macrophages from lymph nodules or from peritoneal cavity of mice, cells of macrophage-like cell line J-774, and monocytes from peripheral blood of healthy donors. The direction of stem cell differentiations in the presence of all the types of mononuclear phagocytes was seen to change from mainly erythroid to mainly myeloid one. The ratio of erythroid to myeloid colonies became equal to 0.5-0.9 instead of 2.0, when bone marrow cells were injected with equivalent quantity of mononuclear phagocytes. This new regulatory function of mononuclear phagocytes is discussed.  相似文献   

7.
The binding and degradation of soluble guinea pig IgG2 aggregates by murine mononuclear phagocytes were studied. Bone marrow mononuclear phagocytes cultured in the presence of an embryonic fibroblast-conditioned medium (CM) degraded the aggregates to a much greater degree than did resident peritoneal macrophages. Binding and degradation by resident peritoneal macrophages were enhanced by culture in the presence of CM.Freshly harvested thioglycollate-induced peritoneal macrophages bound and degraded the aggregates to the same degree as the cultured bone marrow mononuclear phagocytes did. However, the thioglycollate-induced macrophages lost most of these capacities when cultured in vitro without CM. When CM was added to these cultures, the capacity to bind and degrade was restored in a dose-dependent fashion. To obtain the maximum effect, exposure to CM must be maintained for more than 2 days. The effect of CM could be reproduced with purified CSF-1. Taken together the results of this study indicate that Fc receptor expression is modulated by CSF-1.  相似文献   

8.
In order to examine one function of mononuclear phagocytes during maturation from bone marrow precursors to tissue macrophages, an improved hemolytic plaque assay for the detection of synthesis of the second (C2) and fourth (C4) components of C by single cells was developed. With this method, production of C2 and C4 was assessed in cell populations derived from bone marrow, blood, lung, peritoneum, and spleen. The proportion of cells producing C2 and C4 in each population varied. Approximately 10% of bone marrow cells produced C4, but not detectable C2 plaque-forming cells (PFC) were detected. Circulating monocytes yielded about 10% PFC each for C2 and C4. The proportion of C2-producing cells in tissue macrophages varied from approximately 2% in bronchoalveolar macrophages to about 45% in peritoneal and splenic macrophage populations, whereas C4 production by macrophages from lung, peritoneum, and spleen were all approximately 45%. These data suggest that differences in C biosynthesis characterize mononuclear phagocytes at different stages of maturation.  相似文献   

9.
Upon LPS exposure, mononuclear phagocytes produce TNF-alpha and IL-10, two cytokines with pro- and anti-inflammatory activities, respectively. We previously described that murine resident alveolar macrophages, which play a central role in the immunosurveillance of the lung alveoli, do not synthesize IL-10 in vivo or in vitro when exposed to LPS. In the present report we demonstrate that during lung inflammation induced by the intranasal administration of LPS, bronchoalveolar cells collected between days 3 and 5 are able to synthesize IL-10 when exposed to LPS. We also show that depletion of resident alveolar macrophages by an intratracheal instillation of liposome-encapsulated clodronate is followed by subsequent replenishment of the airspaces by mononuclear phagocytes. This is accompanied by the transient competence of cells for IL-10 production. The cell capacity to produce IL-10 is evident up to 3 days and then decreases. This led us to hypothesize that the alveolar environment contains a down-regulator of LPS-induced IL-10 synthesis by recently emigrating mononuclear phagocytes. We show that the surfactant protein A, an airspace protein that has known immunomodulatory activities, dramatically inhibits LPS-induced IL-10 formation by bone marrow-derived macrophages. These data show a difference between resident and inflammatory macrophages with respect to IL-10 synthesis. Moreover, this study highlights for the first time the inhibitory role of surfactant protein A in the anti-inflammatory activity of macrophages through inhibition of IL-10 production.  相似文献   

10.
Mouse resident peritoneal macrophages synthesize two plasminogen activator-specific inhibitors (PAI) that are functionally and antigenically related, but differ in their apparent Mr and oligosaccharide content. Most of the Mr 40,000 inhibitor can be recovered from the cell lysate, whereas the Mr 55,000 glycosylated PAI is preferentially secreted. The murine macrophage PAI are functionally similar and immunologically related to PAI synthesized and secreted by human monocytes-macrophages, and to a PAI from human placenta (PAI-2). PAI production by murine mononuclear phagocytes can be modulated both in vivo and in vitro. Bone marrow-derived macrophages do not produce detectable PAI, whereas inflammatory macrophages obtained from thioglycollate-induced peritoneal exudates produce only low levels of PAI. In cultures of resident peritoneal macrophages, phorbol myristate acetate and cholera toxin increase the synthesis of the Mr 55,000 secreted PAI, whereas dexamethasone decreases the synthesis of both PAI; the production of PAI is also enhanced in the presence of macrophage colony-stimulating factor (CSF-1). The overall proteolytic activity of mononuclear phagocytes thus depends in part on the controlled synthesis and secretion of PAI. The balance between the production of plasminogen activators and of their inhibitors could be critical in determining the level of plasminogen-dependent extracellular proteolysis associated with different phases of the inflammatory response.  相似文献   

11.
The response of the system of mononuclear phagocytes (SMP) to doxorubicin, an antitumor antibiotic, most widely used in oncological care, was studied. It was shown that a single intraperitoneal administration of doxorubicin to CBA mice in the maximum tolerance doses induced suppression of absorptive SMP capacity and increased IL-I secretion by the bone marrow and peritoneal macrophages both in the stimulated and spontaneous tests in early periods after cytostatic administration. There was a significant rise in the ability of SMP bone marrow elements to respond to the macrophage activating factor, as well as an increase in the cytotoxic activity of bone marrow and peritoneal macrophages.  相似文献   

12.
Endogenous peroxidase activity in mononuclear phagocytes   总被引:1,自引:0,他引:1  
The diaminobenzidine (DAB) technique has been used to visualize the subcellular localization of peroxidatic enzymes in mononuclear phagocytes. The latter cells are part of the mononuclear phagocyte system (MPS), which includes the monocytes in the bone marrow and blood, their precursors in the bone marrow, and the resident macrophages in the tissues. The DAB cytochemistry has revealed distinct subcellular distribution patterns of peroxidase in the mononuclear phagocytes. Thus the technique facilitates the identification of the various phagocyte types: Promonocytes contain peroxidase reaction in the nuclear envelope, endoplasmic reticulum, Golgi apparatus, and cytoplasmic granules. Monocytes exhibit the reaction product only in cytoplasmic granules. Most resident macrophages show the activity only in the nuclear envelope and endoplasmic reticulum. Furthermore, new phagocyte types have been detected based on the peroxidase cytochemistry. Intermediate cells between monocytes and resident macrophages contain reaction product in the nuclear envelope, endoplasmic reticulum and cytoplasmic granules. The resident macrophages can be divided into two subtypes. Most of them exhibit the pattern noted above. Some, however, are totally devoid of peroxidase reaction. Most studies on peroxidase cytochemistry of monocytes and macrophages agree that the peroxidase patterns reflect differentiation or maturation stages of one cell line. Some authors, however, still interpret the patterns as invariable characteristics of separate cell lines. As to the function of the peroxidase in phagocytes, the cytochemical findings imply that two different peroxidatic enzymes exist in the latter cells: one peroxidase is synthesized in the endoplasmic reticulum of promonocytes and transported to granules via the Golgi apparatus. The synthesis ceases when the promonocyte matures to the monocyte. Upon phagocytosis the peroxidase is discharged into the phagosomes. Biochemical and functional studies have indicated that this peroxidase (myeloperoxidase) is part of a microbicidal system operating in host defence mechanisms. The other enzyme with peroxidatic activity is confined to the nuclear envelope and endoplasmic reticulum of resident macrophages in-situ and of monocytes at early stages in culture. As suggested by the subcellular distribution, the inhibition by peroxidase blockers, and the localization during phagocytosis studies, the latter peroxidase is functionally different from the myeloperoxidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Human monocytes, human peritoneal macrophages, mouse peritoneal macrophages and human peripheral neutrophils pretreated with beta-1,3-D-polyglucose derivatives showed pronounced bactericidal capacity to Escherichia coli compared to control cells. The increased bactericidal capacity was detectable in mononuclear phagocytes over a wide range of concentrations of bacteria. Granulocytes, however, showed bactericidal capacity only at low concentrations of bacteria. The pretreated mononuclear phagocytes released significant amounts of IL-1 and PGE2. However, there was no significant release of tumor necrosis factor (TNF). By incubating unstimulated cells with purified IL-1 and TNF, the bactericidal activity of neutrophils and mononuclear phagocytes was enhanced. Our data indicate that the inability of neutrophils stimulated with beta-1,3-D-polyglucose derivatives to kill large numbers of bacteria could be overcome by a combined treatment with purified IL-1 or TNF in addition to beta-1,3-D-polyglucose derivatives. By incubating unstimulated cells with medium from beta-1,3-D-polyglucose-treated human peritoneal macrophages, the bactericidal activity of the cells was enhanced to the same extent as cells pretreated with purified TNF and IL-1. Cells incubated with IL-1-depleted medium from beta-1,3-D-polyglucose-treated human peritoneal macrophages, showed reduced bactericidal activity compared to cells incubated with undepleted medium. These studies demonstrate that beta-1,3-D-polyglucose-treated mononuclear phagocytes and neutrophils show enhanced bactericidal activity. The enhanced activity is partly caused by stimulation of the cells with IL-1 released from mononuclear phagocytes and partly by other unknown effects of beta-1,3-D-polyglucose derivatives on both mononuclear phagocytes and neutrophils.  相似文献   

14.
The effects of serum fractions on the growth kinetics and colony formation of mononuclear phagocytes derived from mouse bone marrow, blood, and peritoneal cavity were investigated. Peritoneal exudate macrophages and blood monocytes required a factor(s) found to reside in the nondialyzable serum fraction (molecular weight > 12,000) to survive, a small molecular weight (< 307) factor(s) with growth-stimulatory activity (GSA) contained in the dialyzable serum fraction, and the macrophage growth factor (MGF) for proliferation and colony formation. Fetuin, a major protein of fetal serum, was able to substitute the non-dialyzable serum fraction. Macrophages cultured in medium containing MGF and the nondialyzable serum fraction for 6 days could be restored to full growth following the addition of the dialyzable serum fraction. In contrast, bone marrow mononuclear phagocytes cultured in the absence of the dialyzable serum fraction were capable of proliferating, though at a slower rate, and forming colonies. In addition, neither insulin nor hydrocortisone was capable of replacing the serum-dialyzable GSA nor able to enhance colony formation.  相似文献   

15.
The central nervous system produces growth factors that stimulate proliferation of ameboid microglia during embryogenesis and after traumatic injury. Two microglial mitogens (MMs) are recovered from the brain of newborn rat. MM1 has an approximate molecular mass of 50 kD and a pI of approximately 6.8; MM2 has a molecular mass of 22 kD and a pI of approximately 5.2. These trypsin-sensitive proteins show specificity of action upon glia in vitro serving as growth factors for ameboid microglia but not astroglia or oligodendroglia. Although the MMs did not stimulate proliferation of blood monocytes or resident peritoneal macrophage, MM1 shows granulocyte macrophage colony-stimulating activity when tested upon bone marrow progenitor cells. Microglial mitogens may help to control brain mononuclear phagocytes in vivo. The MMs first appear in the cerebral cortex of rat during early development with peak levels around embryonic day E-20, a period of microglial proliferation. Microglial mitogens are also produced by traumatized brain of adult rats within 2 d after injury. When infused into the cerebral cortex, MM1 and MM2 elicit large numbers of mononuclear phagocytes at the site of injection. In vitro study shows that astroglia from newborn brain secrete MM2. These observations point to the existence of a regulatory system whereby secretion of proteins from brain glia helps to control neighboring inflammatory responses.  相似文献   

16.
The question of which cell components in a rejecting rat renal allograft secrete plasminogen activator (PA) has been analyzed. Although normal renal parenchymal cells also secreted PA, most of the PA in a renal allograft (and to a lesser extent also in an autograft) was produced by the inflammatory leukocytes. Fractionation at 1 g demonstrated that the inflammatory cell population responsible for the PA production in the allograft sedimented together with the large mononuclear phagocytes (macrophages). Fractions purified for small blast cells and large lymphocytes did not contain any PA activity but they were able to induce resting peritoneal macrophages to produce PA when cocultured in vitro. The results demonstrate that the allograft-infiltrating mononuclear phagocytes are "activated" in the sense that they secrete PA and that the activation of mononuclear phagocytes at the site of inflammation may be partially regulated by the inflammatory lymphoid cells.  相似文献   

17.
Cytochemical and biochemical investigations have revealed glucose-6-phosphatase (G-6-Pase) activity in Kupffer cells of the liver. To determine whether other mononuclear phagocytes are also reactive for G-6-Pase, rabbit bone marrow, blood, and alveolar macrophages were tested for G-6-Pase by a modified Wachstein-Meisel method and prepared for electron microscopy. Some mononuclear phagocytes from all three tissues were intensely reactive; others were unreactive. In promonocytes, monocytes, and alveolar macrophages, reaction product for the enzyme was localized throughout all cisternae of the endoplasmic reticulum (ER) and the perinuclear cisternae, but it was absent from the Golgi complex, lysosomes, and occasional smooth tubular channels. These results indicate that mononuclear phagocytes at all stages of development contain cytochemically demonstrable G-6-Pase and that the distribution of the enzyme is not altered during their differentiation from immature cells in the bone marrow to mature macrophages in the lung.  相似文献   

18.
Summary Mouse bone marrow cells, differentiated in vitro into mononuclear phagocytes (BMDMP), possess functional tuftsin binding sites, i.e. both tuftsin binding capacity and augmented phagocytic response related to tuftsin binding. The binding capacity of BMDMP was shown to be higher by a factor of about three than that exhibited by mouse monocytes and by normal, thioglycollate and Corynebacterium parvum induced peritoneal macrophages. The relatively high binding capacity did not depend on experimental variations in the in vitro culture of these populations (i.e. length of in vitro cultivation, source of serum or presence of conditioned medium leading to cell proliferation).The macrophage-like line, P388D1, was also shown to possess functional tuftsin binding sites and its binding capacity was comparable to that of the peritoneal macrophage populations.  相似文献   

19.
The macrophage-specific CSF (CSF-1), purified from murine L cell-conditioned medium, supports the in vitro proliferation and survival of various murine mononuclear phagocyte colony-forming cells. In this report we describe the production and functional characterization of two monoclonal antibodies (mAb) to CSF-1 obtained from rat X rat hybridomas. These two mAb are functionally distinct and recognize different epitopes on CSF-1. The mAb 5A1 binds to and inhibits the biologic function of CSF-1, and the second mAb (D24) binds CSF-1 but does not neutralize its biologic activity. The mAb 5A1 inhibits colony formation of tissue mononuclear phagocyte colony-forming cells as well as the committed bone marrow stem cells for both granulocytes and monocytes. The extent of colony inhibition by mAb 5A1 is dependent on the tissue origin of colony-forming cells. CSF-1 complexed with mAb 5A1 does not bind to its cell surface receptor of peritoneal exudate macrophages, and mAb 5A1 does not complex with cell-bound CSF-1. Although both bone marrow cell-derived macrophages and J774.1 macrophages bind CSF-1, mAb 5A1 inhibits the proliferation of only bone marrow cell-derived macrophages. The non-neutralizing mAb D24 does not block binding of CSF-1 to its cellular receptor, and it recognizes cell-bound CSF-1.  相似文献   

20.
Mononuclear phagocytes are among the first immune cells activated after pathogens invasion. Although they all derive from the same progenitor in the bone marrow, their characteristics differ on the compartment from which they are derived. In this work, we investigated the contribution of phagocytosis for tumor necrosis factor (TNF) production by murine mononuclear phagocytes (monocytes, peritoneal and alveolar macrophages) in response to heat-killed Staphylococcus aureus (HKSA). Mononuclear phagocytes behaved differently, depending on their compartment of residence. Indeed, when bacterial uptake or phagosome maturation was blocked, activation through membrane receptors was sufficient for a maximal production of TNF and interleukin-10 by peritoneal macrophages. In contrast, monocytes, and to a lesser extent alveolar macrophages, required phagocytosis for optimal cytokine production. While investigating the different actors of signalization, we found that p38 kinase and phosphatidylinositol 3-kinase were playing an important role in HKSA phagocytosis and TNF production. Furthermore, blocking the α(5)β(1)-integrin significantly decreased TNF production in response to HKSA in all three cell types. Finally, using mononuclear phagocytes from NOD2 knockout mice, we observed that TNF production in response to HKSA was dependent on NOD2 for monocytes and peritoneal macrophages. In conclusion, we demonstrate that the mechanisms of activation leading to TNF production in response to HKSA are specific for each mononuclear phagocyte population and involve different recognition processes and signaling pathways. The influence of the compartments on cell properties and behavior should be taken into account, to better understand cell physiology and host-pathogen interaction, and to define efficient strategies to fight infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号