首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Seasonal changes in longitudinal patterns of environmental conditions and macroinvertebrate community distributions were examined in an alpine glacial stream (Roseg River, Switzerland). 2. Physico‐chemical parameters reflected seasonal changes in glacial influence via shifts in water sources and flowpaths (glacial meltwater versus ground water), and were best described by turbidity, particulate phosphorus and specific conductance. High nitrogen concentrations indicated snowmelt was the main water source in June. 3. Macroinvertebrate densities and taxon richness were highest during spring (4526 m–2 and 16 taxa, all sites combined) and late autumn/early winter (8676–13 398 m–2 with 16–18 taxa), indicating these periods may be more favourable for these animals than summer when glacial melting is maximal. Diamesa spp. (Chironomidae) dominated the fauna at the upper three sites (>95% of zoobenthos) and were abundant at all locations. Other common taxa at lower sites (1.2–10.6 km downstream of the glacier terminus) included other chironomids (Orthocladiinae, Tanytarsini), the mayflies Baetis alpinus and Rhithrogena spp., the stoneflies Leuctra spp. and Protonemura spp., blackflies (Simulium spp., Prosimulium spp.), and Oligochaeta. 4. Co‐inertia analysis revealed a strong relationship between environmental conditions and benthic macroinvertebrate assemblages. Furthermore, it elucidated temporal variability in longitudinal response patterns, as well as a similarity in temporal patterns among individual sites. 5. Our results suggest that zoobenthic gradients are not solely related to temperature and channel stability. Seasonal shifts in sources and pathways of water (i.e. extent of glacial influence), and periods of favourable environmental conditions (in spring and late autumn/early winter) also strongly influenced zoobenthic distributions.  相似文献   

2.
1. The longitudinal distribution of macroinvertebrates was investigated in June, August and September 1996 and 1997 in the Conca glacial stream and its tributary (Italian Alps; 46°N, 10°E). The principal aim was to test the 22 model that predicts the succession of faunal groups downstream of the glacial snout in relation to water temperature and channel stability. The effect of a non‐glacial tributary on the taxonomic richness and density patterns occurring in the glacial stream was also considered. 2. Channel stability showed an atypical longitudinal trend in the Conca glacial stream, being high in the upper part with Pfankuch Index values between 30 and 33. Water temperature exceeded 6 °C at all stations, with average values below 2 °C occurring only within 700 m from the glacial snout. 3. Taxonomic richness and diversity increased downstream. Taxonomic richness in the glacial stream (at about 1.5 km from the glacier) was comparable with the tributary and the reach after the confluence. Abundance also increased downstream in the glacial stream, but not as greatly as the number of taxa. 4. At higher taxonomic levels, the community structure in the tributary stations appeared to be similar to the two stations in the glacial stream just upstream of the confluence. The effect of the tributary was evident mainly at the genus or species level of the Chironomidae community. Some taxa found in the non‐glacial stream (e.g. Cricotopus fuscus, Eukiefferiella coerulescens, Metriocnemus sp., Paratrichocladius rufiventris, P. skirwitensis, Rheocricotopus effusus and Smittia sp.) were found also in the Conca stream but only after the confluence. 5. The upper glacial reach (within 700 m from the glacier snout) was dominated by the chironomid Diamesa spp. Less than 400 m from the glacier other Diamesinae (Pseudokiefferiella parva) and a few Orthocladiinae, especially Orthocladius (Euorthocladius) rivicola gr., colonized the stream. Some Diamesinae maintained relatively dense populations at mean water temperature around 5 °C, while some Orthocladiinae colonized reaches with mean water temperature <3 °C. 6. Contrary to the 22 model, Dipteran families such as Empididae and Limoniidae were more abundant in the upper stations than Simuliidae; non‐insects such as Nematoda and Oligochaeta were also numerous at some sites. Leuctridae, Taeniopterygidae and Nemouridae were the first Plecoptera to appear upstream, while Chloroperlidae were restricted to the lower reaches. Among Ephemeroptera, Heptageniidae were more abundant than Baetidae in the glacial sites. 7. In this glacial system channel stability and maximum temperature did not show the expected longitudinal trend and thus a typical kryal community was confined within 700 m from the glacier snout where summer mean water temperature was below 4 °C.  相似文献   

3.
1. A study on glacial stream ecosystems was carried out in six regions across Europe, from Svalbard to the French Pyrenees. The main aim was to test the validity of the conceptual model of 38 with regard to the zonation of chironomids of glacier‐fed rivers along altitudinal and latitudinal gradient. 2. Channel stability varied considerably, both on the latitudinal and altitudinal scale, being lowest in the northern regions (Svalbard, Iceland and Norway) and the Swiss Alps. Water temperature at the upstream sites was always <2 °C. 3. There was a prominent difference in taxonomic richness between the Alpine and the northern European regions, with a higher number of taxa in the south. In all regions, the chironomid community was characterized by the genus Diamesa and the subfamily Orthocladiinae. Of a total of 63 taxa recorded, two (Diamesa bertrami and Orthocladius frigidus) were common in all the regions except Svalbard. 4. On the basis of cluster analysis, seven distinct groups of sites were evident amongst glacial‐fed systems of the five regions (Pyrenees excluded). This classification separated the glacier‐fed streams on geographical, latitudinal and downstream gradients. 5. Canonical Correspondence Analysis (CCA) of environmental variables was carried out using 41 taxa at 105 sites. Slope, water depth, distance from source, water temperature and the Pfankuch channel stability index were found to be the major explanatory environmental variables. The analysis separated Diamesinae and typical upstream orthoclads from the other chironomids by low temperature and high channel instability. 6. In all six regions, Diamesa was present closest to the glacier. Within 200 m of the glacier snout, other genera of Diamesinae were found together with Orthocladiinae. Pioneer taxa like Diamesa species coexisted with later colonizers like Eukiefferiella minor/fittkaui in relatively unstable channels. 7. The longitudinal succession of chironomid assemblages across altitudinal and latitudinal gradients in glacial streams followed the same pattern, with similar genera and groups of species. The general aspects of the conceptual model of 38 were supported. However, Diamesa species have wider temperature limits than predicted and other Diamesinae as well as Orthocladiinae colonize metakryal habitats.  相似文献   

4.
Uncertainty about predicted effects of global warming on freshwater ecosystems led us to manipulate the thermal regime of a shallow groundwater ecosystem. The study area was separated into a control and treatment block using a sheet-metal groundwater divide to a depth of 1 m. Temperatures were increased according to General Circulation Model (GCM) projections for Southern Ontario, Canada. We examined the response of the groundwater chironomid community during pre-manipulation, manipulation and recovery periods. We found that warming decreased the total abundance of chironomids whereas no significant change in taxonomic richness was apparent. Interestingly, taxon composition changed markedly during both the manipulation and the recovery period. Whereas Heterotrissocladius disappeared during the manipulation in the treatment block, other coldstenothermal taxa such as Micropsectra, Parametriocnemus and Heleniella remained unaffected. Conversely, Corynoneura, Polypedilum and Thienemannia gracilis disappeared but were not reported as coldstenothermal. The chironomid community composition in the system changed from a Heterotrissocladius, Brillia, and Tanytarsini-dominated community during the pre-manipulation towards one dominated by Parametriocnemus, Polypedilum, Orthocladius/Cricotopus and Corynoneura during the recovery. Although increased temperature had a strong effect, chironomid occurrence was also influenced by a number of other abiotic variables, such as dissolved oxygen, depth, ammonia concentration and TDS (Total dissolved solids). Handling editor: S. Stendera  相似文献   

5.
A three month experimental acidification was carried out on lotic bottom communities. Experiments were conducted under semi-natural conditions in plasticized wooden channels. Acidified communities (pH 4.0), with or without added aluminum, were compared with a reference community (pH 6.3–6.9). Added aluminum concentrations were respectively 0.2 and 0.4 mg 1–1 in experiments performed in 1982 and 1983. Water chemistry and taxonomic composition of the macroinvertebrate communities were monitored. Under acidified conditions, results were similar, with or without added aluminum. Mean abundances of all groups of organisms were lowered. Mayflies nearly completely disappeared from the acidified channels. The only organism not affected by the acidification was Microtendipes sp. Differences in the organism response were observed: Orthocladiinae (Rheocricotopus, Parametriocnemus, Corynoneura, Thienemanniella, Nanocladius, Cricotopus) and Ephemeroptera (Baetis, Habrophlebia, Habrophlebiodes, Paraleptophlebia, Ephemerella), especially early instars, were very sensitive to low pH, Chironomini and Tanypodinae were much less sensitive, while Tanytarsini were intermediate; Oligochaeta and Nematoda were difficult to classify, their response being different from one year to another. Organisms inhabiting the surface of artificial substrates disappeared very rapidly from the system, while those buried inside had a delayed reaction to acidification. Aluminum which was mainly in the monomeric form was not responsible for community modifications. Direct action of hydrogen ions through a physiological stress seems a more credible explanation. These results, induced by a continuous experimental acidification, suggest that if this small headwater stream undergoes acidification, the resulting invertebrate community will be very simplified, with only resistant species able to cope with the acid conditions.  相似文献   

6.
1. Water abstraction from glacial rivers is an important characteristic of hydroelectric power schemes in Alpine regions. Streams in the Valais region of Switzerland have been particularly affected. 2. Invertebrate distributions are described in La Borgne d'Arolla, a glacial stream with icemelt-, snowmelt- and groundwater-dominated tributaries. The icemelt-dominated streams have been affected by abstractions for more than 30 years. 3. The glacial streams contain only Chironomidae (Diamesa), and are devoid of fauna for between 200 and 500 m below the glacier snouts. 4. Immediately below the water intakes the streams are intermittent, flowing only during system purges and high floods, and are devoid of fauna for short distances (<1.5km). 5. Further downstream, abstraction of glacial meltwater increases the importance of snowmelt and groundwater, increasing water temperatures, improving water clarity and increasing the length of krenal/rhithral streams at the expense of kryal streams. 6. A community including Chironomidae, Simuliidae, Baetidae, Nemouridae, Limnephilidae and Chloroperlidae occurs as soon as a permanent flow is maintained by tributary runoff, and the channel becomes stable. 7. A wide range of taxa inhabit snowmelt- and groundwater-dominated tributary streams with stable channels, often at much higher altitudes than the main river. The tributaries provide sources for rapid colonization of the main channel following ice retreat or physical disturbance. 8. Purges and high floods are important disturbances within the main channel. Recovery may be rapid because of drift from tributaries, but sites influenced by frequent disturbances have reduced faunas in comparison to stable channel sites. 9. This study supports the model proposed by Milner & Petts (1994) and shows that deterministic responses of macroinvertebrate communities may be observed to changes of temperature, turbidity, flow regime and channel stability.  相似文献   

7.
Rapid and efficient DNA-based tools are recommended for the evaluation of the insect biodiversity of high-altitude streams. In the present study, focused principally on larvae of the genus Diamesa Meigen 1835 (Diptera: Chironomidae), the congruence between morphological/molecular delimitation of species as well as performances in taxonomic assignments were evaluated. A fragment of the mitochondrial cox1 gene was obtained from 112 larvae, pupae and adults (Diamesinae, Orthocladiinae and Tanypodinae) that were collected in different mountain regions of the Alps and Apennines. On the basis of morphological characters 102 specimens were attributed to 16 species, and the remaining ten specimens were identified to the genus level. Molecular species delimitation was performed using: i) distance-based Automatic Barcode Gap Discovery (ABGD), with no a priori assumptions on species identification; and ii) coalescent tree-based approaches as the Generalized Mixed Yule Coalescent model, its Bayesian implementation and Bayesian Poisson Tree Processes. The ABGD analysis, estimating an optimal intra/interspecific nucleotide distance threshold of 0.7%-1.4%, identified 23 putative species; the tree-based approaches, identified between 25–26 entities, provided nearly identical results. All species belonging to zernyi, steinboecki, latitarsis, bertrami, dampfi and incallida groups, as well as outgroup species, are recovered as separate entities, perfectly matching the identified morphospecies. In contrast, within the cinerella group, cases of discrepancy arose: i) the two morphologically separate species D. cinerella and D. tonsa are neither monophyletic nor diagnosable exhibiting low values of between-taxa nucleotide mean divergence (0.94%); ii) few cases of larvae morphological misidentification were observed. Head capsule color is confirmed to be a valid character able to discriminate larvae of D. zernyi, D. tonsa and D. cinerella, but it is here better defined as a color gradient between the setae submenti and genal setae. DNA barcodes performances were high: average accuracy was ~89% and precision of ~99%. On the basis of the present data, we can thus conclude that molecular identification represents a promising tool that could be effectively adopted in evaluating biodiversity of high-altitude streams.  相似文献   

8.
Glacial rivers: physical habitat and ecology   总被引:7,自引:0,他引:7  
1. This review examines the physical habitat and ecology of glacial rivers which have been relatively unstudied compared with rivers originating from other sources. 2. Typical glacial rivers have summer temperatures below 10°C, a single seasonal peak in discharge, which in the Northern Hemisphere typically occurs in July, a diel fluctuation in flow which usually peaks in late afternoon, and turbidity levels in summer that exceed 30 NTU. These variables contrast with those in snowmelt/rainfall streams, particularly in summer, and make conditions more extreme for the biota. 3. Where maximum temperatures are 2°C benthic invertebrate communities are dominated by Diamcsa (Chironomidae). Downstream, temperatures increase, channels become more stable and valley floors become older. Orthocladiinae (Chironomidae), Simuliidae, Baetidae, Nemouridae and Chloroperlidae become characteristic members of the invertebrate community. 4. Fauna may be displaced, or at least colonization delayed, by channel instability; the variable age structure of the valley floor will influence the faunal gradient, which may also be reset by the effects of tributaries, lakes and valley confinement. 5. We propose a qualitative model that outlines zoobenthic community gradients determined by two principal variables, water temperature and channel stability, as a function of distance downstream, or time since deglaciation.  相似文献   

9.
底栖动物是鱼类重要的天然饵料,评估水体中底栖动物的现存量可以指导渔业生产中鱼类的放养数量。为了探究淡水生态养殖水库中底栖动物群落的季节动态,于2013年4月、7月、10月和2014年1月对三河水库的底栖动物群落进行了调查分析。研究共采集到7个属的底栖动物,隶属于颤蚓科、摇蚊科和蠓科,未采集到软体动物。相对重要性指数(IRI)计算结果表明,菱跗摇蚊属Clinotanypus(IRI=7136)、颤蚓属Tubifex(IRI=6734)和尾鳃蚓属Branchiura(IRI=1384)是优势类群,分别占总捕获数量的34.26%、50.38%和10.96%。不同季节之间底栖动物的总密度和生物量差异显著(P0.05),均为冬季春季夏季秋季。冬季总密度(4100个/m~2)和总生物量(10.14 g/m~2)最高,春季(1446个/m~2;1.07 g/m~2)次之,夏季(579个/m~2;0.66 g/m~2)较低,秋季(492个/m~2;0.64 g/m~2)最低。非度量多维尺度分析(MDS)和群落相似性分析表明底栖动物群落结构季节差异显著(P=0.001),2013年三河水库的底栖动物群落可明显划分为3个:春季群落、夏秋季群落和冬季群落。皮尔森相关分析表明,底栖动物总密度与溶氧和营养盐呈正相关关系,与其他水理化因子呈显著负相关关系(P0.05)。冗余分析表明,氨氮、盐度、pH和浊度是三河水库底栖动物群落季节差异的显著影响因子(P0.05),总氮对底栖动物群落的季节差异具有边缘显著影响(P=0.08)。  相似文献   

10.
Insects inhabiting cold streams must either tolerate or avoid freezing to survive. The present study reports the strategy adopted by fourth‐instar larvae of two chironomid species [Pseudodiamesa branickii (Nowicki) and Diamesa cinerella (Meigen)] overwintering in a glacial stream (in the Italian Alps). The cold adaptive potential of both species under acute cold stress is investigated down to –30 °C. Supercooling points, lower lethal temperatures (LLTs), haemolymph thermal hysteresis, whole body content of sugars and polyols, and the expression of heat shock protein (HSP) genes (hsc70 and hsp70) expression are estimated. Comparable thermal hysteresis (> 2 °C) is measured in the two species, both of which accumulate glucose and sucrose as the main cryoprotectants. According to the supercooling points (= –6.37 and –6.85 °C, respectively) and LLT100 (= –16.2 and –14.7 °C, respectively), P. branickii and D. cinerella can both be considered as freeze tolerant. However, the cumulative proportion of individual freezing values and the LLT50 (–9.14 and –6.13 °C, respectively) suggest that P. branickii is more cold hardy than D. cinerella, whereas the gene expression data (i.e. an absence of up‐regulation of hsp70 in D. cinerella) suggest that D. cinerella is more cold hardy than P. branickii. These findings are discussed in relation to the validity of the different metabolic indicators for defining the level of cold hardiness of a species, even in relation to its cold stenothermy. The results are also discussed in relation to climate warming, which represents a serious threat for species from glacier‐fed streams.  相似文献   

11.
Ecology of alpine streams   总被引:6,自引:0,他引:6  
1. This review examines ecological conditions and zoobenthic communities of kryal, krenal and rhithral streams of the alpine zone. Altitudinal and biogeographical faunal patterns are also analysed. 2. Kryal segments, fed by glacial meltwater, are characterized by low temperatures (Tmax4°C) and large diel flow fluctuations in summer. The water may be clear or turbid from suspended rock flour. Fishes and higher plants are absent. The macroalga Hydrurus foetidus may be abundant in kryal and other alpine stream types of the Holarctic. The highly restricted cosmopolitan fauna of glacial brooks consists of diamesine chironomids, sometimes accompanied by simuliids. Sparse food resources include algae and allochthonous (aeolian) organic matter. 3. Rhithral segments in alpine catchments are characterized by soft water, a hydrograph dominated by an extended period of snowmelt runoff, and a broader temperature range than kryal or krenal biotopes. Bryophytes, macroalgae (chrysophytes, chlorophytes, cyanophytes, rhodophytes) and epiphytic and epilithic diatoms constitute the flora. A relatively diverse zoobenthos includes four orders of insects (Flecoptera, Ephemeroptera, Trichoptera, Diptera), turbellarians, acarines, oligochaetes and nematodes. 4. Krenal segments, fed by groundwater, are typically calcareous with summer-cool and winter-warm thermal conditions, high water clarity, and constant flow regimes. Bryophytes and macroafgae are accompanied by a rich diatom flora. The zoobenthos consists of a composite of kryal and rhithral elements with few crenobionts. Zoobenthos species richness values are intermediate between those of kryal and rhithral segments, whereas densities in perennial, well-oxygenated springbrooks far exceed those in other alpine stream types. 5. Downstream faunal changes are most predictable in kryal segments where chironomids of the genus Diamesa are the predominant, if not sole, members of the zoobenthos in the upper zone of glacial brooks, the metakryal. Where Tmax exceeds about 2°C the transition to the hypokryal occurs and Diamesa is co-dominant with simuliids. These largely stenozonal headwater forms decline downstream where Tmax exceeds about 4°C, concomitant with a marked increase in the euryzonal mountain fauna. 6. Species occurring in alpine rhithral biotopes tend to be euryzonal forms at their upper alrirudinal limits, whereas the lower elevation mountain stream fauna consists of species with narrower distribution limits. There is, however, a precipitous drop in mean altitudinal range from the alpine rhithral to the kryat because of the stenozonal nature of the glacial brook fauna. 7. The view that effects of temperature on generation time and mutation rate determine the speed at which selection proceeds is consistent with altitudinal species richness patterns exhibited by zoobenthos along the alrirudinal gradient and may provide an evolutionary explanation for the low faunal diversity in alpine headwaters. 8. With increasing altitude, mountain ‘islands’ become progressively insular as area decreases and isolation increases. For a cold-adapted stream fauna the insular nature of mountain tops is greatest in the tropics. Nonetheless, alpine stream faunas generally  相似文献   

12.
Chironomid communities from three glacial and three non-glacial high mountain streams in three Alpine river basins were analyzed (Conca, Niscli, Cornisello, NE Italy, 46°N, 10°E). Eighteen sampling reaches belonging to five stream types (kryal, subkryal, glacio-rhithral, kreno-rhithral, outlet) were investigated. At each reach, geomorphological, physical, chemical and biological data were collected. Field surveys were carried out during three periods per year from 1996 to 1998: immediately after spring snowmelt, in mid-summer and in early autumn. In all, 439 zoobenthos samples were collected from 5 to 10 microhabitats of 0.1m2 in each reach and date using a standard pond net (mesh size of 250m). About 50% of individuals collected were chironomids (26673 specimens, 53 taxa), with densities ranging from 4 to 2652indm–2. With few exceptions, they dominated as number of taxa and individuals in all reaches. Chironomid subfamilies Diamesinae and Orthocladiinae were most abundant, especially in glacial reaches, where Diamesa spp. constituted up to 100% of the total fauna. Chironomid distribution was analyzed in relation to 37 abiotic variables, referring to stream origin, hydrology, geomorphology, physics and chemistry. Diamesa steinboecki, D. latitarsis gr. A and Pseudokiefferiella parva were the taxa best associated with glacial conditions (i.e. high channel instability or presence of bedrock, high suspended solids and total phosphorous content, low conductivity and silica content, highly variable diel discharge and low mean temperature), while Pseudodiamesa branickii, Corynoneura spp., Eukiefferiella spp., Parorthocladius nudipennis, Tvetenia calvescens/bavarica, Thienemaniella spp. and Micropsectra atrofasciata were mostly associated with non-glacial conditions. Substratum particle size, water depth, current velocity, the presence of riffles/pools and of mosses/algae (Hydrurus foetidus) were the major factors affecting microdistribution of chironomids in the investigated streams.  相似文献   

13.
1. The ecology of glacier‐fed streams at temperate latitudes has been intensely studied in recent years, leading to the development of a well‐validated conceptual model on the longitudinal distribution of macroinvertebrate communities downstream of the glacier margin (Freshwater Biology, 2001a; 46 , 1833). However, to our knowledge, the ecology of tropical glacier‐fed streams has not yet been studied. 2. We sampled benthic macroinvertebrates and measured environmental variables at nine sites between 4730 and 4225 m altitude along a 4.3 km stretch of a glacier‐fed stream 40 km south of the equator in the Ecuadorian Andes. Our goal was to study the longitudinal distribution of the fauna in relation to environmental factors and to compare this with the conceptual model based on temperate–arctic glacier‐fed streams. 3. Total density of invertebrates differed considerably at the two highest altitude sites; 4600 m?2 at a pro‐glacial lake outlet and only 4 m?2 at a site originating directly from the glacier snout. Otherwise, there was a downstream decrease in density to about 825 m?2 at the three lowest sites. Taxon richness increased with distance from the glacier, very similar to the pattern predicted. A total of 28 taxa were collected; two at the glacier snout, seven at the nearby pro‐glacial lake outlet, 13 at site 2 (<400 m from the glacier) and 20 at the lowest sites. 4. The numerical percentage of Chironomidae (Diptera) decreased downstream from 100 to 44%. The subfamily Podonominae was numerous at the highest sites but became much less important further downstream. The Orthocladiinae were important both in numbers and species at all sites, while Diamesinae were numerous only in the middle of the reach studied and were completely absent from the upper three sites. The limited importance of the Diamesinae, and its replacement by Podonominae, is different from the pattern typically observed in north‐temperate glacier‐fed streams. This could be because of the fact that the genus Diamesa is missing from the Neotropics. 5. Stream temperature and channel stability explained most of the variability in faunal composition and richness, supporting the model. Stability increased systematically downstream while temperature did not. Surprisingly, no classical kryal zone (Tmax < 4 °C) was found, as even the site closest to the glacier snout (50 m) had a Tmax of 15 °C and no site had Tmax < 8 °C. We propose that this might be a general feature of equatorial glacial streams.  相似文献   

14.
We estimated the effects of Bythotrephes longimanus invasion on the trophic position (TP) of zooplankton communities and lake herring, Coregonus artedi. Temporal changes in lacustrine zooplankton communities following Bythotrephes invasion were contrasted with non-invaded reference lakes, and along with published information on zooplankton and herring diets, formed the basis of estimated changes in TP. The TP of zooplankton communities and lake herring increased significantly following the invasion of Bythotrephes, whereas TP in reference lakes decreased (zooplankton) or did not change significantly (lake herring) over a similar time frame. Elevated TP following Bythotrephes invasion was most prominent in lakes that also supported the glacial relict, Mysis diluvania, suggesting a possible synergistic interaction between these two species on zooplankton community composition. Our analysis indicated that elevated TPs of zooplankton communities and lake herring are not simply due to the presence of Bythotrephes, but rather reflect changes in the zooplankton community induced by Bythotrephes; namely, a major reduction in the proportion of herbivorous cladoceran biomass and a concomitant increase in the proportion of omnivorous and/or predatory copepod biomass in invaded lakes. We demonstrated that increases in TP of the magnitude reported here can lead to substantial increases in fish contaminant concentrations. In light of these results, we discuss potential mechanisms that may be responsible for the disconnect between empirical and theoretical evidence that mid-trophic level species invasions (e.g., Bythotrephes) elevate contaminant burdens of consumer species, and provide testable hypotheses to evaluate these mechanisms.  相似文献   

15.
The chironomid fauna living in running waters in the Southern Alps was investigated from an ecological and biogeographical point of view: 202 species were identified (not including terrestrial species). It must be emphasised that species identification is tentative within some genera, especially those awaiting revision (e.g., Boreoheptagyia, Chaetocladius). Although much taxonomic work was done in the past on the chironomid Alpine fauna, there are still many unsolved problems. Most of the species found are widespread in the Palearctic Region, with no evidence of bio-geographical barriers separating different Alpine sectors. Really a relatively high number of species reported from the northern and western side (France, Switzerland, Austria) of the Alps was not captured on the southern side (Italy), whereas most species found on the southern side are also present on the northern one. Very few species are reported from southern side only. Lack of sampling, imperfect taxonomic knowledge and different environmental conditions between the northern and southern sides may be responsible of this result. A comparison of the fauna of the southern Alps with the fauna of the Apennines suggests that the differences are probably more related to ecological conditions (lack of glaciers in the Apennines) than to biogeographical barriers. Different chironomid assemblages colonise manifold habitat types: strict cold-stenothermal species tolerating high current velocity (e.g., Diamesa latitarsissteinboecki group) are almost the sole inhabitants of kryal biotopes, while other cold-stenothermal species are restricted to cold springs (Diamesa dampfi, D. incallida, Tokunagaia rectangularis, T. tonollii), there are also species characteristic of hygropetric habitats (Syndiamesa edwardsi, S. nigra) or restricted to lacustrine habitats (Corynoneura lacustris, Paratanytarsus austriacus). It must be emphasised that different responses to environmental factors can be observed between species belonging to the same genus (e.g., Diamesa, Eukiefferiella, Orthocladius , Paratrichocladius), so species identification is really needed for a good ecological work. Water temperature, current velocity, substrate type are the most critical factors, sometime chironomid species appear to be rather opportunistic and their presence or absence cannot be clearly related to a well defined range of values of environmental variables: be it a lack of knowledge or a real datum will be the task of future studies. The waters of the Alps are still relatively unpolluted, but hydraulic stress due to river damming and canalization is a serious problem for macrofauna conservation, and as the glaciers retreat, the species confined to the glacial snouts are at risk of extinction, some of them possibly even before their existence be discovered. *The complete database with detailed taxonomical, ecological and biogeographical information can be obtained by the senior author to request (e-mail: bruno.rossaro@unimi.it). A table with species response to environmental variables is also available at the web site: http://users.unimi.it/~roma1999/rossaro.html, downloading file CHIRDB.)  相似文献   

16.
There are only few studies on shallow Antarctic benthic communities associated with habitats affected by intense mineral sedimentation inflow. The analysis of macrofaunal communities associated with two shallow, isolated glacial coves was performed in Admiralty Bay (King George Island) and compared with non-disturbed sites. Multivariate analyses (hierarchical classification, nMDS) clearly separated glacial cove communities (two assemblages) from the sites situated outside both basins (two assemblages). The community influenced by the streamflow of glacial discharge of meltwater situated in the area with sandy–clay–silt sediments had a very low species richness, diversity and abundance. It was dominated by eurytopic, motile deposit feeding polychaetes such as Mesospio moorei, Tharyx cincinnatus and Leitoscoloplos kerguelensis as well as the bivalve Yoldia eightsi. The second glacial community of the area located at a grater distance from the outlet of the stream was characterized by sandy–clay–silt and clay–silt deposits and showed also a low diversity and species richness. The most abundant here were peracarid crustaceans, with the dominant opportunistic feeder Cheirimedon femoratus. Community from the non-disturbed area with silty–clay–sand, and silty–sand sediments had higher species richness and diversity. The assemblage of fauna from the sandy bottom has values of those two indexes similar to those found in the disturbed areas.  相似文献   

17.
The longitudinal distribution and seasonal fluctuation of phytoplankton communities was studied along the middle to lower part of a regulated river system (Nakdong River, Korea). Phytoplankton biomass decreased sharply in the middle part of the river (182 km upward the estuary dam), and then increased downstream reaching a maximum at the last sampling station (27 km upward the estuary dam). In contrast, there was little downstream fluctuation in species composition, irrespective of pronounced differences in nutrient concentrations (TN, TP, NO3, NH4, PO4) as well as in algal biomass. In the main river channel, small centric diatoms (Stephanodiscus hantzschii, Cyclotella meneghiniana) and pennate diatoms (Synedra, Fragilaria, Nitzschia) were dominant from winter to early spring (November–April). A mixed community of cryptomonads, centric and pennate diatoms, and coenobial greens (Pediastrum, Scenedesmus) was dominant in late spring (May–June). Blue-green algae (Anabaena, Microcystis, Oscillatoria) were dominant in the summer (July–September). A mid-summer Microcystis bloom occurred at all study sites during the dry season, when discharge was low, though the nutrient concentration varied in each study site. Nutrients appeared everywhere to be in excess of algal requirement and apparently did not influence markedly the downstream and seasonal phytoplankton compositional differences in this river.  相似文献   

18.
19.
【目的】研究细菌群落组成在西昆仑崇测冰帽冰川雪样、冰碛物和土样中的差异。【方法】通过传统的纯培养和菌株16S r RNA基因序列鉴定,分析菌株在门水平和属水平的群落结构。【结果】冰川细菌由Actinobacteria、Firmicutes、Proteobacteria和Bacteroidetes 4个门组成。雪样以Proteobacteria为优势,而土样和冰碛物则以Actinobacteria为优势。在属的水平上,冰川土样中的优势属仅有Arthrobacter,雪样中的优势属主要有Methylobacterium、Modestobacter、Hymenobacter、Brevundimonas、Bacillus这5种。雪环境的细菌群落结构与冰碛物和土样的差异性较大,而冰碛物和土样之间的差异性不大。Skermanella可能为崇测冰帽所特有的细菌。【结论】初步说明了在冰川退缩的气候环境下,冰川雪样细菌多样性的脆弱性,以及冰川雪环境细菌资源保护的重要性。  相似文献   

20.
This study reports on the density, growth, and production response of the dominant black fly, Prosimulium martini, to whole river fertilization of the Kuparuk River in arctic Alaska during the summer of 1984. Beginning in 1983, a long term study of fertilization effects was initiated in the Kuparuk River. Increased nutrient supply stimulated algal and microbial biomass and microbial activity, which in turn affected the larval growth and abundance of Prosimulium. This experiment allowed us to isolate the effects of nutrient supply from other factors in determining black fly growth and abundance. Phosphorus addition had the following indirect effects on Prosimulium: growth was higher, but abundance decreased in the enriched section, leading to a net decrease in secondary production from 2.62 g m−2 yr−1 to 0.77 g m−2 yr−1. Prosimulium emergence rates were not measureably affected. The decrease in abundance and production appears to be a result of competitive displacement by the caddisfly Brachycentrus americanus which increased in abundance in the fertilized section of the river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号