首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [2Fe–2S] ferredoxin from the extreme haloarchaeon Halobacterium salinarum is stable in high (>1.5 M) salt concentration. At low salt concentration the protein exhibits partial unfolding. The kinetics of unfolding was studied in low salt and in presence of urea in order to investigate the role of salt ions on the stability of the protein. The urea dependent unfolding, monitored by fluorescence of the tryptophan residues and circular dichroism, suggests that the native protein is stable at neutral pH, is destabilized in both acidic and alkaline environment, and involves the formation of kinetic intermediate(s). In contrast, the unfolding kinetics in low salt exhibits enhanced rate of unfolding with increase in pH value and is a two state process without the formation of intermediate. The unfolding at neutral pH is salt concentration dependent and occurs in two stages. The first stage, involves an initial fast phase (indicative of the formation of a hydrophobic collapsed state) followed by a relatively slow phase, and is dependent on the type of cation and anion. The second stage is considerably slower, proceeds with an increase in fluorescence intensity and is largely independent of the nature of salt. Our results thus show that the native form of the haloarchaeal ferredoxin (in high salt concentration) unfolds in low salt concentration through an apparently hydrophobic collapsed form, which leads to a kinetic intermediate. This intermediate then unfolds further to the low salt form of the protein.  相似文献   

2.
The ferredoxin of the extreme haloarchaeon Halobacterium salinarum requires high (>2 M) concentration of salt for its stability. We have used a variety of spectroscopic probes for identifying the structural elements which necessitate the presence of high salt for its stability. Titration of either the fluorescence intensity of the tryptophan residues or the circular dichroism (CD) at 217 nm with salt has identified a structural form at low (<0.1 M) concentration of salt. This structural form (L) exhibits increased solvent exposure of W side chain(s) and decreased level of secondary structure compared to the native (N) protein at high concentrations of salt. The L-form, however, contains significantly higher levels of both secondary and tertiary structures compared to the form (U) found in highly denaturing conditions such as 8 M urea. The structural integrity of the L-form was highly pH dependent while that of N- or U-form was not. The pH dependence of either fluorescence intensity or CD of the L-form showed the presence of two apparent pK values: approximately 5 and approximately 10. The structural integrity of the L-form at low (<5) pH was very similar to that of the N-form. However, titration with denaturants showed that the low pH L-form is significantly less stable than the N-form. The increased destabilization of the L-form with the increase in pH was interpreted to be due to mutual Coulombic repulsion of carboxylate side chains (pK approximately 6) and due to the disruption of salt bridge(s) between ionized carboxylates and protonated amino groups (pK approximately 10). Estimation of solvent accessibility of W residues by fluorescence quenching, and measurement of decay kinetics of fluorescence intensity and anisotropy strongly support the above model. Polylysine interacted stoichiometrically with the L-form of ferredoxin resulting in nativelike structure. In conclusion, our studies show that high concentration of salt stabilizes the haloarchaeal ferredoxin in two ways: (i) neutralization of Coulombic repulsion among carboxyl groups of the acidic residues, and (ii) salting out of hydrophobic residues leading to their burial and stronger interaction.  相似文献   

3.
A second ferredoxin protein was isolated from the thermophilic anaerobic bacterium Clostridium thermoaceticum and termed ferredoxin II. This ferredoxin was found to contain 7.9 +/- 0.3 iron atoms and 7.4 +/- 0.4 acid-labile sulfur atoms per mol of protein. Extrusion studies of the iron-sulfur centers showed the presence of two [Fe4-S4] centers per mol of protein and accounted for all of the iron present. The absorption spectrum was characterized by maxima at 390 nm (epsilon 390 = 30,400 M-1cm-1) and 280 nm (epsilon 280 = 41.400 M-1 cm-1) and by a shoulder at 300 nm. The ration of the absorbance of the pure protein at 390 nm to the absorbance at 280 nm was 0.74. Electron paramagnetic resonance data showed a weak signal in the oxidized state, and the reduced ferredoxin exhibited a spectrum typical of [Fe4-S4] clusters. Double integration of the reduced spectra showed that two electrons were necessary for the complete reduction of ferredoxin II. Amino histidine, and 1 arginine, and a molecular weight of 6,748 for the native protein. The ferredoxin is stable under anaerobic conditions for 60 min at 70 degrees C. The average oxidation-reduction potential for the two [Fe4-S4] centers was measured as -365 mV.  相似文献   

4.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

5.
More than 20 human diseases involve the fibrillation of a specific protein/peptide which forms pathological deposits at various sites. Hereditary lysozyme amyloidosis is a systemic disorder which mostly affects liver, spleen and kidney. This conformational disorder is featured by lysozyme fibril formation. In vivo lysozyme fibrillation was simulated under in vitro conditions using a strong denaturant GdHCl at 3 M concentration. Sharp decline in the ANS fluorescence intensity compared to the partially unfolded states, almost 20-fold increase in ThT fluorescence intensity, increase in absorbance at 450 nm suggesting turbidity, negative ellipticity peak in the far-UVCD at 217 nm, red shift of 50 nm compared to the native state in Congo red assay and appearance of a network of long rope-like fibrils in transmission electron microscope (TEM) analysis suggested HEWL fibrillation. Anti-fibrillation potency of baicalein against the preformed fibrils of HEWL was investigated following ThT assay in which there was a dose-dependent decrease in ThT fluorescence intensity compared to the fibrillar state of HEWL with the maximum effect observed at 150-μM baicalein concentration, loss of negative ellipticity peak in the far-UVCD region, dip in the Rayleigh scattering intensity and absorbance at 350 and 450 nm, respectively, together with a reduction in the density of fibrillar structure in TEM imaging. Thus, it could be suggested that baicalein could prove to be a positive therapeutics for hereditary human lysozyme amyloidosis.  相似文献   

6.
从高等植物叶绿体中分离得到的光系统Ⅱ(PSⅡ)反应中心D_1-D_2-Cytb(559)复合物很不稳定,极易受到光照的破坏。光照导致D_1-D_2-Cytb_(559)在红区(Qy带)的吸收光谱发生很大的变化,在最初光照45秒时间内,吸光度值升高,继续光照则吸光度值下降,而且680nm处的下降速度最大,吸收峰发生兰移,光照也导致荧光强度增大,发射峰兰移。所有这些结果表明,光破坏至少存在两个不同的过程,而且主要受到破坏的是原初电子供体P680。  相似文献   

7.
The structure of the rhodanese-tetracyanonickelate (E X Ni(CN)2-4) complex has been characterized here in spectral and physical studies using urea as a structural perturbant. UV difference absorption, sedimentation velocity ultracentrifugation, fluorescence, and circular dichroism data show no significant conformational differences between sulfur-free rhodanese (E) and the E X Ni(CN)2-4 complex. The urea-induced enzyme structural transition curves were noncoincident when different structural parameters were monitored. For E, the urea concentrations giving half-maximal change (Cm) were: Cm = 3.0 M for activity measurement; Cm = 2.8 M for protein intrinsic fluorescence intensity; Cm = 4.3 M for ellipticity at 220 nm; and Cm = 3.3 M for wavelength of fluorescence emission maximum. For the E X Ni(CN)2-4 complex, Cm was shifted to a higher urea concentration relative to that found for E when activity (Cm = 3.6 M) and native protein fluorescence (Cm = 3.6 M) were the measured parameters but not when the wavelength of the emission maximum and ellipticity were monitored. Furthermore, urea-induced rhodanese structural changes were time-dependent and Ni(CN)2-4 binding on E slowed enzyme inactivation that is associated with structural relaxations. These findings, that Ni(CN)2-4 affects structural relaxations in rhodanese, are of particular interest in light of the recent suggestion that the E X Ni(CN)2-4 complex mimics a normally inaccessible intermediate in catalysis.  相似文献   

8.
A systematic investigation of the effect of polyethylene glycols, salts, and alcohols on the trichloroacetic acid (TCA)-induced state of ferricytochrome c was made using various spectroscopic techniques. Native cytochrome c (Cyt c) has a fluorescence maximum at 335 nm, whereas the TCA-induced state of Cyt c has a red shift of 7 nm with enhanced fluorescence intensity. The near- and far-UV CD spectra showed a significant loss of tertiary and secondary structure, although the protein is relatively less unfolded as compared with a conformation at pH 2.0. Addition of 70% (v/v) polyols to TCA (3.3 mM)-induced state of Cyt c resulted in increased 1-anilino-8-naphthalene sulfonate binding and increased mean residue ellipticity at 222 nm, indicating increase in compactness with enhanced exposure of hydrophobic surface area. Also, the stabilizing effect of salts and alcohols on the TCA-induced state was studied and compared with their effect on trifluoroacetic acid-unfolded state of Cyt c. Among all the polyols, salts, and alcohols studied, PEG-400, K3[Fe(CN)6], and butanol were the most efficient in inducing secondary structure in TCA-induced state as examined by the above-mentioned spectroscopic techniques. For salts, the efficiency in inducing the secondary structure followed the order K3[Fe(CN)6] > KClO4 > K2SO4 > KCl. For alcohols, this order was found to be as follows: butanol > propanol > ethanol > methanol.  相似文献   

9.
The activity and conformational change of human placental cystatin (HPC), a low molecular weight thiol proteinase inhibitor (12,500) has been investigated in presence of guanidine hydrochloride (GdnHCl) and urea. The denaturation of HPC was followed by activity measurements, fluorescence spectroscopy and Circular Dichroism (CD) studies. Increasing the denaturant concentration significantly enhanced the inactivation and unfolding of HPC. The enzyme was 50% inactivated at 1.5 M GdnHCl or 3 M urea. Up to 1.5 M GdnHCl concentration there was quenching of fluorescence intensity compared to native form however at 2 M concentration intensity increased and emission maxima had 5 nm red shift with complete unfolding in 4–6 M range. The mid point of transition was in the region of 1.5–2 M. In case of urea denaturation, the fluorescence intensity increased gradually with increase in the concentration of denaturant. The protein unfolded completely in 6–8 M concentration of urea with a mid-point of transition at 3 M. CD spectroscopy shows that the ellipticity of HPC has increased compared to that of native up to 1.5 M GdnHCl and then there is gradual decrease in ellipticity from 2 to 5 M concentration. At 6 M GdnHCl the protein had random coil conformation. For urea the ellipticity decreases with increase in concentration showing a sigmoidal shaped transition curve with little change up to 1 M urea. The protein greatly loses its structure at 6 M urea and at 8 M it is a random coil. The urea induced denaturation follows two-state rule in which Native→Denatured state transition occurs in a single step whereas in case of GdnHCl, intermediates or non-native states are observed at lower concentrations of denaturant. These intermediate states are possibly due to stabilizing properties of guanidine cation (Gdn+) at lower concentrations, whereas at higher concentrations it acts as a classical denaturant.  相似文献   

10.
We have carried out a systematic investigation of salts- and alcohols-induced conformational alterations on the trifluoroacetic acid (TFA)-treated ferricytochrome c by soret absorption spectroscopy, far UV circular dichroism (CD), tryptophan fluorescence, and 1-anilino-8-naphthalene sulfonate (ANS) binding. TFA induces the unfolding of native cytochrome c obtained from horse heart leading to loss of secondary structure. The addition of increasing concentration of salts and alcohols leads to increase in MRE value at 222 and 208 nm indicating an increase in the alpha-helical content leading to formation of compact dimensional structure. Cytochrome c is a heme protein in which the resonance energy of tryptophan is transferred to heme resulting in quenched tryptophan fluorescence. Addition of alcohols leads to increase in tryptophan and ANS fluorescence. The tryptophan and ANS fluorescence in case of salts shows decreased fluorescence intensity. TFA-induced unfolded cytochrome c showed the soret absorption maximum at 394 nm. However, an intermediate state in presence of alcohols and salts showed the absorption maxima at 398 nm and 402 nm, respectively. Among all the salts and alcohols studied, K3Fe(CN)6 and butanol were found to be most effective as examined by the above-mentioned spectroscopic techniques. The order of effectiveness of alcohols was found to be butanol > propanol > ethanol > methanol. The following effective trend in the case of salts was obtained: K3Fe(CN)6 > K2SO4>KClO4 > KCl. These results suggest that alcohols induce an intermediate with molten globule-like conformation on the TFA unfolded state, whereas salts induce a refolded intermediate approaching native-like conformation.  相似文献   

11.
Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Marinobacter sp. EMB8 α-amylase was found to be active and stable in salt and organic solvents. A study was carried out using circular dichroism (CD), fluorescence spectroscopy, and bioinformatics analysis of similar protein sequence to ascertain molecular basis of salt and solvent adaptability of α-amylase. Structural changes recorded in the presence of varying amounts of NaCl exhibited an increase in negative ellipticity as a function of salt, confirming that salt stabilizes the protein and increases the secondary structure, making it catalytically functional. The data of intrinsic and extrinsic fluorescence (using 1-anilinonaphthalene 8-sulfonate [ANS] as probe) further confirmed the role of salt. The α-amylase was active in the presence of nonpolar solvents, namely, hexane and decane, but inactivated by ethanol. The decrease in the activity was correlated with the loss of tertiary structure in the presence of ethanol. Guanidine hydrochloride and pH denaturation indicated the molten globule state at pH 4.0. Partial N-terminal amino acid sequence of the purified α-amylase revealed the relatedness to Pseudoalteromonas sp. α-amylase. “FVHLFEW” was found as the N-terminal signature sequence. Bioinformatics analysis was done using M. algicola α-amylase protein having the same N-terminal signature sequence. The three-dimensional structure of Marinobacter α-amylase was deduced using the I-TASSER server, which reflected the enrichment of acidic amino acids on the surface, imparting the stability in the presence of salt. Our study clearly indicate that salt is necessary for maintaining the secondary and tertiary structure of halophilic protein, which is a necessary prerequisite for catalysis.  相似文献   

12.
We studied the effect of various anions (of acids and salts) on the acid denatured state of HSA by near-UV circular dichroism (CD), far-UV CD, 1-anilinonaphthalene-8-sulfonate (ANS) binding, tryptophan fluorescence and thermal transition. Addition of different acids and salts caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity (MRE) value at 222 nm and loss of ANS binding sites exhibited by the decrease in the ANS fluorescence intensity at 480 nm. However, the concentration range of acids/salts required to bring about the transition varied greatly among different acids and salts. Among various acids/salts tested, K(3)Fe(CN)(6) was found to be most effective whereas HCl and KCl were least effective in inducing the properties close to native structure. Further, they followed the electroselectivity series. The near-UV CD spectra showed an increase in MRE towards the native state, whereas the tryptophan fluorescence emission spectra produced a red shift of about 6 nm on addition of KClO(4). The temperature-induced transition in the presence of 40 mM KClO(4) monitored by ellipticity measurements at 222 nm was characterized by the presence of an intermediate state in the temperature range 30-50 degrees C having abundant secondary structure. These results suggest that human serum albumin at low pH and in the presence of acids or salts exists in a partially folded state characterized by native-like secondary structure and tertiary folds.  相似文献   

13.
Maeda Y  Fujihara M  Ikeda I 《Biopolymers》2002,67(2):107-112
The structure of horseradish peroxidase (HRP) in phosphate buffered saline (PBS)/dimethyl sulfoxide (DMSO) mixed solvents at different compositions is investigated by IR, electronic absorption, and fluorescence spectroscopies. The fluorescence spectra and the amide I spectra of ferric HRP [HRP(Fe3+)] show that overall structural changes are relatively small up to 60% DMSO. Although the amide I band of HRP(Fe3+) shows a gradual change in the secondary structure and a decrease in the contents of a helices, its fluorescence spectra indicate that the distance between the heme and Trp173 is almost constant. In contrast, the changes in the positions of the Soret bands for resting HRP(Fe3+) and catalytic intermediates (compounds I and II) and the IR spectra at the C-O stretching vibration mode of carbonyl ferrous HRP [HRP(Fe2+)-CO] show that the microenvironment in the distal heme pocket is altered, even with low DMSO contents. The large reduction of the catalytic activity of HRP even at low DMSO contents can be attributed to the structural transition in the distal heme pocket. In PBS/DMSO mixtures containing more than 70 vol % DMSO, HRP undergoes large structural changes, including a large loss of the secondary structure and a dissociation of the heme from the apoprotein. The presence of the components of the amide I band that can be assigned to strongly hydrogen bonding amide C=O groups at 1616 and 1684 cm(-1) suggests that the denatured HRP may aggregate through strong hydrogen bonds.  相似文献   

14.
We have measured the X-ray absorption spectra of Fe in photosystem I (PS I) preparations from spinach and a thermophilic cyanobacterium, Synechococcus sp., to characterize structures of the Fe complexes that function as electron acceptors in PS I. These acceptors include centers A and B, which are probably typical [4Fe-4S] ferredoxins, and X. The structure of X is not known, but its electron paramagnetic resonance (EPR) spectrum has generated the suggestions that it is either a [2Fe-2S] or [4Fe-4S] ferredoxin or an Fe-quinone species. The iron X-ray absorption K-edge and iron extended X-ray absorption fine structure (EXAFS) spectra reveal that essentially all of the 11-14 Fe atoms present in the reaction center are present in the form of Fe-S centers and that not more than 1 atom out of 12 could be octahedral or oxygen-coordinated Fe. This suggests that, besides A and B, additional Fe-S clusters are present which are likely to be X. Our EXAFS spectra cannot be simulated adequately by a mixture of [4Fe-4S] ferredoxins with typical bond lengths and disorder parameters because the amplitude of Fe backscattering is small; however, excellent simulations of the data are consistent with a mixture of [2Fe-2S] ferredoxins and [4Fe-4S] ferredoxins, or with unusually distorted [4Fe-4S] clusters. We presume that the [2Fe-2S] or distorted [4Fe-4S] centers are X. The X-ray absorption spectra of PS I preparations from Synechococcus and spinach are essentially indistinguishable.  相似文献   

15.
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.  相似文献   

16.
In the present study, two phytocystatins were purified to homogeneity as peaks I and II with molecular weights of 19 kDa and 17 kDa, respectively, as determined by SDS-PAGE and mass spectrometry. Both PMCs I and II were purified with a greater than 1000-fold purification and overall yield of about 16-18%. The effect of urea on PMC I and II was analysed by fluorescence and Circular Dichroism (CD) spectroscopy. Fluorescence studies suggest a red shift of the maximum emission at higher urea concentrations. PMC I and II are extremely stable protein inhibitors with regards to temperature and pH stability. FTIR studies show predominant alpha-helical structure in both the cystatins. CD analysis results show change in urea concentration-dependent loss in ellipticity, as well as in the shape of the CD spectrum compared to the intact phytocystatin.  相似文献   

17.
The calcium-binding protein isolated from the sarcoplasm of the muscles of the sand worm Nereis diversicolor has four EF-hands and three active binding sites for Ca(2+) or Mg(2+). Nereis diversicolor sarcoplasmic calcium-binding protein contains three tryptophan residues at positions 4, 57, and 170, respectively. The Wt protein shows a very limited fluorescence increase upon binding of Ca(2+) or Mg(2+). Single-tryptophan-containing mutants were produced and purified. The fluorescence titrations of these mutants show a limited decrease of the affinity for calcium, but no alterations of the cooperativity. Upon adding calcium, Trp170 shows a strong fluorescence increase, Trp57 an extensive fluorescence decrease, and Trp4 shows no fluorescence change. Therefore mutant W4F/W170F is ideally suited to analyze the fluorescence titrations and to study the binding mechanism. Mutations of the calcium ligands at the z-position in the three binding sites show no effect at site I and a total loss of cooperativity at sites III and IV. The quenching of Trp57 upon calcium binding is dependent on the presence of arginine R25, but this residue is not just a simple dynamic quencher. The role of the salt bridge R25-D58 is also investigated.  相似文献   

18.
Two optimized forms of green fluorescence proteins (GFP), enhanced GFP (EGFP) and humanized Renilla GFP (hrGFP), were used to track expression of cytochrome P450 2B1 (CYP2B1), an endoplasmic reticulum membrane-bound protein. In transiently expressing HEK293 cells we show that CYP2B1-GFP fusion proteins are stable and functional, whereas the vice-versa-arranged GFP-CYP2B1 fusions are not. The CYP2B1-hrGFP fusion protein is characterized by reduction in mean fluorescence intensity (MFI) to less than 20% of that of the hrGFP protein alone, accompanied by a 50% loss of CYP2B1 activity. Exchanging the linker for an alpha-helical peptide structure between CYP2B1 and hrGFP does not improve fusion protein activity. Insertion of a short linker (five amino acids) increases reporter protein fluorescence intensity twofold without improving CYP2B1 activity. Introduction of the foot and mouth disease virus 2A sequence providing cotranslational cleavage led to an unstable hrGFP-2A protein, whereas the corresponding EGFP-2A protein was stable and yielded an MFI superior to those of all other fusion constructs tested. CYP2B1 activity of the EGFP-2A-CYP2B1 protein was in the range of that of the unmodified CYP2B1. These data indicate that the protein arrangement EGFP-2A-CYP2B1 is superior to others, since it is most active and visible, which is essential for an effective tracking of the CYP2B1 enzyme.  相似文献   

19.
The effect of dimethyl sulfoxide (DMSO) on the structure of sarcoplasmic reticulum was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopy. Exposure of sarcoplasmic reticulum vesicles to 35% DMSO (v/v) at 2 degrees C for several hours in a D2O medium produced no significant change in the phospholipid and protein Amide I regions of the FTIR spectra, but the intensity of the Amide II band decreased, presumably due to proton/deuterium exchange. At 40% to 60% DMSO concentration a shoulder appeared in the FTIR spectra at 1630 cm-1, that is attributed to the formation of new beta or random coil structures; irreversible loss of ATPase activity accompanied this change. At 70% DMSO concentration the intensity of the main Amide I band at 1639 cm-1 decreased and a new band appeared at 1622 cm-1, together with a shoulder at 1682 cm-1. These changes indicate an abrupt shift in the conformational equilibrium of Ca2+-ATPase from alpha to beta structure or to a new structure characterized by weaker hydrogen bonding. Decrease of ionization of aspartate and glutamate carboxyl groups in the presence of DMSO may also contribute to the change in intensity at 1622 cm-1. The changes were partially reversed upon removal of DMSO. Exposure of sarcoplasmic reticulum vesicles to 1.5 kbar pressure for 1 h at 2 degrees C in an EGTA-containing (low Ca2+) medium causes irreversible loss of ATPase activity, with the appearance of new beta structure, and abolition of the Ca2+-induced fluorescence response of FITC covalently bound to the Ca2+-ATPase; DMSO (35%) stabilized the Ca2+-ATPase against pressure-induced changes in structure and enzymatic activity, while urea (0.8 M) had the opposite effect.  相似文献   

20.
Haloarchaea are predominant in the salt crystallizers of the Rann of Kutch when the concentration of salts approaches saturation levels. The obligate and extreme halophilic archaeon 3A1-DGR, isolated from a salt crystallizer pond of the Little Rann of Kutch, India, needs minimum of 10 % NaCl in the growth medium. To understand the mechanism(s) of osmotolerance and adaptation at extreme osmolarity, and to mine relevant gene(s), the genome of this haloarchaeon, 3A1-DGR, was sequenced. We report here, the 2.88 Mb draft genome sequence of the haloarchaeon 3A1-DGR, with G+C content of 68 % and the possible involvement of 43 genes in stress tolerance. Further studies of the genome of this haloarchaeon would be required to identify gene(s) that might be responsible for imparting extreme osmotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号