首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipids can be anaerobically digested to methane, but methanogens are often considered to be highly sensitive to the long-chain fatty acids (LCFA) deriving from lipids hydrolysis. In this study, the effect of unsaturated (oleate [C18:1]) and saturated (stearate [C18:0] and palmitate [C16:0]) LCFA toward methanogenic archaea was studied in batch enrichments and in pure cultures. Overall, oleate had a more stringent effect on methanogens than saturated LCFA, and the degree of tolerance to LCFA was different among distinct species of methanogens. Methanobacterium formicicum was able to grow in both oleate- and palmitate-degrading enrichments (OM and PM cultures, respectively), whereas Methanospirillum hungatei only survived in a PM culture. The two acetoclastic methanogens tested, Methanosarcina mazei and Methanosaeta concilii, could be detected in both enrichment cultures, with better survival in PM cultures than in OM cultures. Viability tests using live/dead staining further confirmed that exponential growth-phase cultures of M. hungatei are more sensitive to oleate than are M. formicicum cultures; exposure to 0.5 mM oleate damaged 99% ± 1% of the cell membranes of M. hungatei and 53% ± 10% of the cell membranes of M. formicicum. In terms of methanogenic activity, M. hungatei was inhibited for 50% by 0.3, 0.4, and 1 mM oleate, stearate, and palmitate, respectively. M. formicicum was more resilient, since 1 mM oleate and >4 mM stearate or palmitate was needed to cause 50% inhibition on methanogenic activity.  相似文献   

2.
Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR-amplified 16S rRNA gene fragments. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in oleate and palmitate enrichment cultures clustered with fatty acid-oxidizing bacteria within Syntrophomonadaceae and Syntrophobacteraceae families. A low methane yield, corresponding to 9 to 18% of the theoretical value, was observed in the oleate enrichment, and acetate, produced according to the expected stoichiometry, was not further converted to methane. In the palmitate enrichment culture, the acetate produced was completely mineralized and a methane yield of 48 to 70% was achieved from palmitate degradation. Furthermore, the oleate enrichment culture was able to use palmitate without detectable changes in the DGGE profile. However, the palmitate-specialized consortia degraded oleate only after a lag phase of 3 months, after which the DGGE profile had changed. Two predominant bands appeared, and sequence analysis showed affiliation with the Syntrophomonas genus. These bands were also present in the oleate enrichment culture, suggesting that these bacteria are directly involved in oleate degradation, emphasizing possible differences between the degradation of unsaturated and saturated LCFAs.  相似文献   

3.
4.
Effects of free long-chain fatty acids on thermophilic anaerobic digestion   总被引:3,自引:0,他引:3  
Summary Low concentrations of the long-chain fatty acids oleate and stearate inhibited all steps of the anaerobic thermophilic biogas process during digestion of cattle manure. The lag phase increased when the concentrations of oleate and stearate were 0.2 g/l and 0.5 g/l, respectively, and no growth was found at concentrations of 0.5 g/l for oleate and 1.0 g/l for stearate. The toxic effect of these acids was permanent as growth did not occur when inhibited cultures were diluted to a non-inhibitory concentration. No adaptation to the fatty acids toxicity was observed by pre-exposing the cultures to non-inhibitory concentrations and the inhibitory response was the same as for cultures not pre-exposed to the fatty acids. Oleate was less inhibitory when added as a neutral oil in the form of the glycerol ester. This indicates that it is the free fatty acid that influences the bacterial activity. Correspondence to: B. K. Ahring  相似文献   

5.
Summary We investigated the effects of conditioned media derived from mouse mammary fat pads on the proliferation of CL-S1 cells, an epithelial cell line originally isolated from a preneoplastic mammary outgrowth line. Cell proliferation in vitro in serum-free defined medium was compared to that in this medium conditioned using intact mammary fat pad pieces or isolated fat pad adipocytes. Culture medium was conditioned by incubating the conditioning material in defined culture medium for 24 h at 37°C. Conditioned medium induced CL-S1 proliferation as much as 10- to 20-fold above the minimal levels of growth in control cultures after 13 d of culture. The growth-stimulatory factor(s) had an apparent molecular weight of greater than 10 kDa. This growth-stimulatory activity was both heat and trypsin stable. Because the role of adipose tissue is to store and release lipids, we next tested whether lipids are released during medium conditioning. The lipid composition of the fat pad conditioned medium was characterized using both thin layer and gas liquid chromatography. These lipid analyses indicated that the fat pad pieces released significant amounts of fatty acids and phospholipids into the medium during the conditioning period. The free fatty acid composition included both saturated and unsaturated molecules, and about 80% of the total fatty acids consisted of palmitate, stearate, oleate, and linoleate. These same fatty acids were a structural component of the majority of phospholipid found in the medium. The addition of palmitate or stearate to defined medium had no effect or was inhibitory for CL-S1 proliferation, depending on the concentration used. Defined medium supplemented with oleate, arachidonate, or linoleate induced CL-S1 proliferation, and the inhibitory effects of palmitate and stearate were overcome by addition of oleate and linoleate. These data indicate that both unsaturated and saturated fatty acids are released from intact adipose cells of the mouse mammary fat pad and that fatty acids can influence the growth of prenoplastic mouse mammary epithelium. Thus, unsaturated fatty acids, perhaps in conjunction with other substances released simultaneously, are candidate molecules for the substances that mediate the effect of adipose tissue on growth of epithelium. This work was supported in part by a grant from the American Institute for Cancer Research; grant CA 46885 from the National Institutes of Health, Bethesda, MD; and by State of Washington initiative 171.  相似文献   

6.
Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR-amplified 16S rRNA gene fragments. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in oleate and palmitate enrichment cultures clustered with fatty acid-oxidizing bacteria within Syntrophomonadaceae and Syntrophobacteraceae families. A low methane yield, corresponding to 9 to 18% of the theoretical value, was observed in the oleate enrichment, and acetate, produced according to the expected stoichiometry, was not further converted to methane. In the palmitate enrichment culture, the acetate produced was completely mineralized and a methane yield of 48 to 70% was achieved from palmitate degradation. Furthermore, the oleate enrichment culture was able to use palmitate without detectable changes in the DGGE profile. However, the palmitate-specialized consortia degraded oleate only after a lag phase of 3 months, after which the DGGE profile had changed. Two predominant bands appeared, and sequence analysis showed affiliation with the Syntrophomonas genus. These bands were also present in the oleate enrichment culture, suggesting that these bacteria are directly involved in oleate degradation, emphasizing possible differences between the degradation of unsaturated and saturated LCFAs.  相似文献   

7.
The mechanisms underlying the protective effect of monounsaturated fatty acids (e.g. oleate) against the lipotoxic action of saturated fatty acids (e.g. palmitate) in skeletal muscle cells remain poorly understood. This study aimed to examine the role of mitochondrial long-chain fatty acid (LCFA) oxidation in mediating oleate''s protective effect against palmitate-induced lipotoxicity. CPT1 (carnitine palmitoyltransferase 1), which is the key regulatory enzyme of mitochondrial LCFA oxidation, is inhibited by malonyl-CoA, an intermediate of lipogenesis. We showed that expression of a mutant form of CPT1 (CPT1mt), which is active but insensitive to malonyl-CoA inhibition, in C2C12 myotubes led to increased LCFA oxidation flux even in the presence of high concentrations of glucose and insulin. Furthermore, similar to preincubation with oleate, CPT1mt expression protected muscle cells from palmitate-induced apoptosis and insulin resistance by decreasing the content of deleterious palmitate derivates (i.e. diacylglycerols and ceramides). Oleate preincubation exerted its protective effect by two mechanisms: (i) in contrast to CPT1mt expression, oleate preincubation increased the channeling of palmitate toward triglycerides, as a result of enhanced diacylglycerol acyltransferase 2 expression, and (ii) oleate preincubation promoted palmitate oxidation through increasing CPT1 expression and modulating the activities of acetyl-CoA carboxylase and AMP-activated protein kinase. In conclusion, we demonstrated that targeting mitochondrial LCFA oxidation via CPT1mt expression leads to the same protective effect as oleate preincubation, providing strong evidence that redirecting palmitate metabolism toward oxidation is sufficient to protect against palmitate-induced lipotoxicity.  相似文献   

8.
Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.  相似文献   

9.
We investigated long-chain fatty acid (LCFA)-degrading anaerobic microbes by enrichment, isolation, and RNA-based stable isotope probing (SIP). Primary enrichment cultures were made with each of four LCFA substrates (palmitate, stearate, oleate, or linoleate, as the sole energy source) at 55 degrees C or 37 degrees C with two sources of anaerobic granular sludge as the inoculum. After several transfers, we obtained seven stable enrichment cultures in which LCFAs were converted to methane. The bacterial populations in these cultures were then subjected to 16S rRNA gene-based cloning, in situ hybridization, and RNA-SIP. In five of seven enrichment cultures, the predominant bacteria were affiliated with the family Syntrophomonadaceae. The other two enrichment cultures contained different bacterial populations in which the majority of members belonged to the phylum Firmicutes and the class Deltaproteobacteria. After several attempts to isolate these dominant bacteria, strain MPA, belonging to the family Syntrophomonadaceae, and strain TOL, affiliated with the phylum Firmicutes, were successfully isolated. Strain MPA converts palmitate to acetate and methane in syntrophic association with Methanospirillum hungatei. Even though strain TOL assimilated [(13)C]palmitate in the original enrichment culture, strain TOL has not shown the ability to degrade LCFAs after isolation. These results suggest that microbes involved in the degradation of LCFAs under methanogenic conditions might not belong only to the family Syntrophomonadaceae, as most anaerobic LCFA-degrading microbes do, but may also be found in phylogenetically diverse bacterial groups.  相似文献   

10.
Methyl esters of fatty acids, free fatty acids, and hydrocarbons were found in the culture liquid and in the cellular lipids of the obligate methylotrophic bacterium Methylophilus quaylei under optimal growth conditions and osmotic stress. The main extracellular hydrophobic metabolite was methyl stearate. Exogenous free fatty acids C16–C18 and their methyl esters stimulated the M. quaylei growth and survivability, as well as production of exopolysaccharide under osmotic and oxidative stress, playing the role of growth factors and adaptogens. The order of hydrophobic supplements according to the ability to stimulate bacterial growth is C18: 1 > C18: 0 > C16: 0 > methyl oleate > methyl stearate > no supplements > C14: 0 > C12: 0. The mechanism underlying the protective action of fatty acids and their methyl esters is discussed.  相似文献   

11.
Fatty Acid Desaturase Mutants of Saccharomyces cerevisiae   总被引:13,自引:9,他引:4       下载免费PDF全文
Genetic and biochemical analyses were conducted on fatty acid mutants of yeast deficient for Δ9-desaturase activity in the production of palmitoleate and oleate. Two genetic loci were observed and two others are inferred; three of these were represented by respiratory-deficient (petite) strains. All strains were incapable of converting palmitate to palmitoleate and stearate to oleate whether the direct precursor or acetate was followed. All strains were capable of acylating both de novoproduced fatty acids and oleate taken up from the medium into phospholipids and neutral lipids. Two revertants were analyzed which differed in their ability to produce palmitoleate and oleate.  相似文献   

12.
Abstract

This study was conducted to determine the effects of long chain fatty acids (LCFAs) on triacylglycerol (TAG) content, as well as on genes associated with lipid synthesis and fatty acid composition in bovine satellite cells. Both saturated (palmitic and stearic) and unsaturated (oleic and linoleic) fatty acids stimulated the TAG accumulation at a concentration of 100?µM and oleate increased it significantly more than stearate and palmitate. The results revealed that the lipid droplet formation was markedly stimulated by linoleate and oleate at 100?µM. Compared to control, the expressions of adipose triglyceride lipase, carnitine acyltransferase 1 and the fatty acid translocase 36 were upregulated by LCFAs. All the fatty acids also significantly increased diacylglycerol acyltransferase 2 than the untreated control (p?<?0.05). The monounsaturated fatty acids significantly increased (p?<?0.05) in response to oleate and linoleate compared to the control as did the polyunsaturated fatty acids (p?<?0.05), in addition to stearate, linoleate and oleate. In contrast, saturated fatty acids were significantly decreased in the oleate and linoleate-treated groups. The study results contribute to our enhanced understanding of LCFAs’ regulatory roles on the bovine cell lipid metabolism.  相似文献   

13.
GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca2+ concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.  相似文献   

14.
Paramecium requires oleate for growth. The phospholipids of the ciliate contain high concentrations of palmitate and 18- and 20-carbon unsaturated fatty acids. We previously showed that radiolabeled oleate is desaturated and elongated to provide these 18- and 20-carbon unsaturated acids. We now report on saturated fatty acid (SFA) metabolism in Paramecium. Radiolabeled palmitate and stearate were incorporated directly into cellular phospholipids with little or no desaturation and/or elongation. Radiolabeled acetate, malonate, pyruvate, citrate, or glucose added to cultures were not incorporated into cellular phospholipid fatty acids indicating that these exogenously supplied putative precursors were not utilized for fatty acid synthesis by Paramecium. Radiolabel from octanoate or hexanoate appeared in fatty acyl groups of phospholipids, possibly by partial beta-oxidation and reincorporation of the label. Under oleate-free conditions in which cultures do not grow, radiolabel from these shorter chain SFA were beta-oxidized and preferentially used for the formation of arachidonate, the major end-product of fatty acid synthesis in Paramecium. Cerulenin inhibited culture growth apparently by inhibiting de novo fatty acid synthesis. Cerulenin-treated cells did not incorporate radioactivity from [1-14C]octanoate into esterified palmitate. However, total saponifiable phospholipid fatty acids, including SFA, per cell increased under these conditions.  相似文献   

15.
Porphyridium cruentum Näg. (clone 161) was found to grow best in medium containing between 0.45 M and 0.8 M NaCl. From studies done on growing cultures, the palmitic acid content of the cells decreased with increasing NaCl concentration of the medium. Conversely, when the culture was transferred from a 0.8 M NaCl medium to 0.2 M NaCl, the amount of palmitic acid in thePorphyridium cells increased with time of incubation and it contributed up to 64.5% of the total fatty acid content. There appears to be a negative correlation between the cellular content of palmitic acid and the growth lag. The oleic acid content varied only marginally with increasing NaCl concentration. The poly-unsaturated acid content (linolenic and arachidonic acids) decreased initially and then increased with NaCl concentration up to and beyond ca. 0.8 M NaCl respectively. At 1.5 M NaCl, the poly-unsaturated fatty acids amounted to 78.2% of the total fatty acids in the cell. For stationary phaseP. cruentum cultures, a similar relationship existed between fatty acids and NaCl concentration. However, palmitic acid was accumulated up to three-fold more when compared to the exponential culture grown in low salinity. In addition stearic acid was also found in significant quantities.  相似文献   

16.
After 24 h exposure to 0.1 mM oleate or 0.1 mM palmitate there was a 2- and 1.7-fold increase, respectively, in the incorporation of choline into the lipids of type II pneumocytes. Palmitate increased the labeling of disaturated phosphatidylcholine (PC) from 23.0% of total labeled PC in control cultures to 56.6% and oleate decreased labeling of disaturated PC to 9.4%. The percentage of total cellular radioactivity found in the lipid fraction was also markedly higher in the fatty acid-treated cells (83.3% for oleate and 78.7% for palmitate) than in control cultures (64.0%). Radioactivity in water-soluble choline metabolites was correspondingly lower, with phosphocholine representing more than 95% of the label in both control and experimental cultures. After a 3 h pulse-chase period, oleate and palmitate significantly increased the percentage of total cellular radioactivity in PC and decreased the percentage in phosphocholine. Similar results were obtained by adding melittin (1–2 μg/ml) or phospholipase C (0.05 U/ml) to the culture medium. The stimulation of PC synthesis by fatty acids was demonstrated as early as 1 h after exposure to oleate or palmitate and at all concentrations from 0.025 to 0.25 mM. Cytidylyltransferase activity in total cell homogenates was also enhanced by long-term exposure to fatty acids and short-term addition of fatty acids or phospholipase C and melittin to the culture medium. A similar increase in Cytidylyltransferase activity was found in the 100 000 × g particulate fraction of type II cells exposed to fatty acids, whereas no differences were found between the cytosolic fractions of control and treated cells. These results support the concept that an increase in intracellular level of fatty acids either from an exogenous source or following the activation of endogenous phospholipases regulates PC synthesis in fetal type II pneumocytes.  相似文献   

17.
Supplementation of culture medium with elaidic acid (400 μg/flask) in L-M cells results in the formation of an otherwise undetected lipid component. We have identified this lipid component to be a mixture of free fatty alcohols containing primarily elaidyl alcohol with cetyl, stearoyl, and oleoyl alcohols as minor constituents. Formation of fatty alcohols by fatty acid supplementation seems to be specific with trans fatty acids (i.e., elaidate, trans vaccenate, and linolelaidate); addition of stearate and oleate to the L-M cells does not produce fatty alcohols. The fatty alcohols accumulated by the trans fatty acid supplementation are associated with both the particulate and supernatant fractions of the cells.  相似文献   

18.
Mixed cultures of bacteria, enriched from aquatic sediments, grew anaerobically on all three isomers of phthalic acid. Each culture grew anaerobically on only one isomer and also grew aerobically on the same isomer. Pure cultures were isolated from the phthalic acid (o-phthalic acid) and isophthalic acid (m-phthalic acid) enrichments that grew aerobically on phthalic and isophthalic acids. Cell suspension experiments indicated that protocatechuate is an intermediate of aerobic catabolism. Pure cultures which grew aerobically on terephthalic acid (p-phthalic acid) could not be isolated from the enrichments, and neither could pure cultures that grew anaerobically on any of the isomers. Cell suspension experiments suggested that separate pathways exist for the aerobic and anaerobic oxidation of phthalic acids. Each enrichment culture used only one phthalic acid isomer under anaerobic conditions, but all isomers were simultaneously adapted for the anaerobic catabolism of benzoate. Cells grown anaerobically on a phthalic acid immediately attacked the isomer under anaerobic conditions, whereas there was a lag before aerobic breakdown occurred, and, for phthalic and terephthalic acids, chloramphenicol stopped aerobic adaptation but had no effect on anaerobic catabolism. This work suggests that phthalic acids are biodegradable in anaerobic environments.  相似文献   

19.
The parasite Exeristes roborator grew rapidly and completed larval development on fatty acid free chemically defined diets. Dietary supplements of palmitoleate, oleate, linoleate, and linolenate were detrimental to parasite development with most larvae dying in the first instar. Palmitate supplements were also toxic, but a small percentage of larvae consistently completed development and survival and development time on diets supplemented with free stearate did not differ significantly from results obtained with fatty acid free diets. Supplements of a mixture of all six free fatty acids were as toxic as the unsaturated free fatty acids. Dietary supplements of the triglycerides, tripalmitin, tripalmitoleate, tristearin, and trioleate had no positive nutritional value for larval growth and development but were not detrimental.Development time was increased when the parasite was reared on fatty acid free diets lacking carbohydrate, but survival was not affected. The parasite, therefore, appears to have the ability to utilize dietary free amino acids as the sole energy source at this stage. Under these nutritional conditions, supplements of triglycerides did not replace the nutritional value of carbohydrate and some of the supplementary triglycerides were detrimental to larval survival.  相似文献   

20.
The effects of norepinephrine on ketogenesis in isolated hepatocytes have been reported as ranging from stimulation to inhibition. The present work was planned with the aim of clarifying these discrepancies. The experimental system was the once-through perfused liver from fasted and fed rats. Fatty acids with chain lengths varying from 8-18 were infused. The effects of norepinephrine depended on the metabolic state of the rat and on the nature of the fatty acid. Norepinephrine clearly inhibited ketogenesis from long-chain fatty acids (stearate > palmitate > oleate), but had little effect on ketogenesis from medium-chain fatty acids (octanoate and laureate). With palmitate the decrease in oxygen uptake was restricted to the substrate stimulated portion; with stearate, the decrease exceeded the substrate stimulated portion; with oleate, oxygen uptake was transiently inhibited. Withdrawal of Ca2+ attenuated the inhibitory effects. 14CO2 production from [1-14C]oleate was inhibited. Net uptake of the fatty acids was not affected by norepinephrine. In livers from fed rats, oxygen uptake and ketogenesis from stearate were only transiently inhibited. The conclusions are: (a) in the fasted state norepinephrine reduces ketogenesis and respiration by means of a Ca2+-dependent mechanism; (b) the degree of inhibition varies with the chain length and the degree of saturation of the fatty acids; (c) norepinephrine favours esterification of the activated long-chain fatty acids in detriment to oxidation; (d) in the fed state the stimulatory action of norepinephrine on glycogen catabolism induces conditions which are able to reverse inhibition of ketogenesis and oxygen uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号