首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the daily dietary iodine intake (approximately 90 %) will be excreted in the urine; measurement of urinary iodine excretion is thus routinely used as an index of dietary iodine intake. However, urinary excretion is not the only means of iodine loss. Subjects such as athletes or those participating in vigorous exercise can lose a considerable amount of iodine in sweat, depending on environmental factors such as temperature and humidity. In areas of lower to moderate dietary iodine intake, loss in sweat can equal that in urine. Although electrolyte loss in sweat is well-recognized and replacement strategies are adopted, there is less recognition of potential iodine loss. Crude calculations reveal that if sweat iodide losses are not replaced, dietary stores could be depleted in an athlete undergoing a regular training regime. The significance of these losses could be increased in areas where dietary iodine intake is lower in the summer months. Although there is little doubt that excessive sweating can induce a relative iodine deficiency state, there is no case as yet for iodine supplementation in those that take vigorous exercise. However, sustained iodine loss may have implications for thyroid status and possibly consequences for athletic performance.  相似文献   

2.
The focus of this paper is on the glycemic index (GI) that provides effectual information on planning nutritional strategies for carbohydrate (CHO) supplementation in exercise. Related research has suggested that the GI can be used as a reference guide for the selection of an ideal CHO supplement in sports nutrition. Recently, the manipulation of GI of CHO supplementation in optimizing athletic performance has provided an exciting new research area in sports nutrition. There is a growing evidence to support the use of the GI in planning the nutritional strategies for CHO supplementation in sports. The optimum CHO availability for exercise has been demonstrated by manipulating the GI of CHO. Research has shown that a low GI CHO-rich meal is a suitable CHO source before prolonged exercise in order to promote the availability of the sustained CHO. In contrast, a high GI CHO-rich meal appears to be beneficial for glycogen storage after the exercise by promoting greater glucose and insulin responses. The prescribed feeding patterns of CHO intake during recovery and prior to exercise on glycogen re-synthesis and exercise metabolism have been studied in the literature. However, the studies on the subject are still limited, leaving some open questions waiting for further empirical evidences. The most significant question is whether CHO supplementation before and after exercise is beneficial when consumed as large feedings or as a series of snacks. Further research is needed on the effect of feeding patterns on exercise performance.  相似文献   

3.
Whether the use of pre-exercise hyperhydration could improve the performance of athletes who do not hydrate sufficiently during prolonged exercise is still unknown. We therefore compared the effects of pre-exercise hyperhydration and pre-exercise euhydration on endurance capacity, peak power output and selected components of the cardiovascular and thermoregulatory systems during prolonged cycling. Using a randomized, crossover experimental design, 6 endurance-trained subjects underwent a pre-exercise hyperhydration (26 ml of water x kg body mass(-1) with 1.2 g glycerol x kg body mass(-1)) or pre-exercise euhydration period of 80 min, followed by 2 h of cycling at 65% maximal oxygen consumption (VO(.)2max) (26-27 degrees C) that were interspersed by 5, 2-min intervals performed at 80% V(.)O2max. Following the 2 h cycling exercise, subjects underwent an incremental cycling test to exhaustion. Pre-exercise hyperhydration increased body water by 16.1+/-2.2 ml.kg body mass(-1). During exercise, subjects received 12.5 ml of sports drink x kg body mass(-1). With pre-exercise hyperhydration and pre-exercise euhydration, respectively, fluid ingestion during exercise replaced 31.0+/-2.9% and 37.1+/-6.8% of sweat losses (p>0.05). Body mass loss at the end of exercise reached 1.7+/-0.3% with pre-exercise hyperhydration and 3.3+/-0.4% with pre-exercise euhydration (p<0.05). During the 2 h of cycling, pre-exercise hyperhydration significantly decreased heart rate and perceived thirst, but rectal temperature, sweat rate, perceived exertion and perceived heat-stress did not differ between conditions. Pre-exercise hyperhydration significantly increased time to exhaustion and peak power output, compared with pre-exercise euhydration. We conclude that pre-exercise hyperhydration improves endurance capacity and peak power output and decreases heart rate and thirst sensation, but does not reduce rectal temperature during 2 h of moderate to intense cycling in a moderate environment when fluid consumption is 33% of sweat losses.  相似文献   

4.
This study examined the effect of dietary consumption of carbohydrates (CHO) on the blood lactate to rating of perceived exertion (La:RPE) ratio during an intense micro-cycle of exercise training. This ratio is a proposed biomarker of exercise training stress and potential indicator for under- or overtraining in athletes. Sixteen male athletes were randomly assigned into two groups; high CHO (H-CHO; 60% of daily caloric intake) and low CHO (L-CHO; 30% of daily caloric intake). Diets were controlled the day before and for the three days of the micro-cycle. The micro-cycle consisted of three successive days of 60 minutes of intense cycling (~70% of VO2peak). Blood samples were obtained immediately before and after exercise (post) on each day of exercise training (D1, D2, D3) and were analyzed for blood lactate. Rating of perceived exertion (RPE) scores were taken at the end of each exercise session and combined with the post exercise lactate value to form the La:RPE ratio. An analysis of variance (ANOVA) showed a significant difference between the La:RPE ratio for the H-CHO and L-CHO groups at D3 even though the exercise intensity was not significantly different between the groups. Specifically, the ratio was significantly (p < 0.02) lower on D3 in the L-CHO group (~31% lower) than in the H-CHO group. From these findings it is recommended that diet needs to be monitored when using the La:RPE ratio as an exercise training biomarker to determine whether an athlete is truly under-training or overtraining. Athletes or coaches that use the La:RPE ratio as a training biomarker, but do not monitor dietary CHO intake need to interpreted their findings carefully.  相似文献   

5.
Carbohydrate nutrition before, during, and after exercise   总被引:1,自引:0,他引:1  
The role of dietary carbohydrates (CHO) in the resynthesis of muscle and liver glycogen after prolonged, exhaustive exercise has been clearly demonstrated. The mechanisms responsible for optimal glycogen storage are linked to the activation of glycogen synthetase by depletion of glycogen and the subsequent intake of CHO. Although diets rich in CHO may increase the muscle glycogen stores and enhance endurance exercise performance when consumed in the days before the activity, they also increase the rate of CHO oxidation and the use of muscle glycogen. When consumed in the last hour before exercise, the insulin stimulated-uptake of glucose from blood often results in hypoglycemia, greater dependence on muscle glycogen, and an earlier onset of exhaustion than when no CHO is fed. Ingesting CHO during exercise appears to be of minimal value to performance except in events lasting 2 h or longer. The form of CHO (i.e., glucose, fructose, sucrose) ingested may produce different blood glucose and insulin responses, but the rate of muscle glycogen resynthesis is about the same regardless of the structure.  相似文献   

6.
Hypohydration occurs during cold-air exposure (CAE) through combined effects of reduced fluid intake and increased fluid losses. Because hypohydration is associated with reduced physical performance, strategies for maintaining hydration during CAE are important. Glycerol ingestion (GI) can induce hyperhydration in hot and temperate environments, resulting in greater fluid retention compared with water (WI) alone, but it is not effective during cold-water immersion. Water immersion induces a greater natriuresis and diuresis than cold exposure; therefore, whether GI might be effective for hyperhydration during CAE remains unknown. This study examined physiological responses, i.e., thermoregulatory, cardiovascular, renal, vascular fluid, and fluid-regulating hormonal responses, to GI in seven men during 4 h CAE (15 degrees C, 30% relative humidity). Subjects completed three separate, double-blind, and counterbalanced trials including WI (37 ml water/l total body water), GI (37 ml water/l total body water plus 1.5 g glycerol/l total body water), and no fluid. Fluids were ingested 30 min before CAE. Thermoregulatory responses to cold were similar during each trial. Urine flow rates were higher (P = 0.0001) with WI (peak 11.8 ml/min, SD 1.9) than GI (5.0 ml/min, SD 1.8), and fluid retention was greater (P = 0.0001) with GI (34%, SD 7) than WI (18%, SD 5) at the end of CAE. Differences in urine flow rate and fluid retention were the result of a greater free water clearance with WI. These data indicate glycerol can be an effective hyperhydrating agent during CAE.  相似文献   

7.
Competitive athletes completed two studies of 2-h steady-state (SS) cycling at 70% peak O(2) uptake followed by 7 kJ/kg time trial (TT) with carbohydrate (CHO) intake before (2 g/kg) and during (6% CHO drink) exercise. In Study A, 12 subjects received either 6 mg/kg caffeine 1 h preexercise (Precaf), 6 x 1 mg/kg caffeine every 20 min throughout SS (Durcaf), 2 x 5 ml/kg Coca-Cola between 100 and 120 min SS and during TT (Coke), or placebo. Improvements in TT were as follows: Precaf, 3.4% (0.2-6.5%, 95% confidence interval); Durcaf, 3.1% (-0.1-6.5%); and Coke, 3.1% (-0.2-6.2%). In Study B, eight subjects received 3 x 5 ml/kg of different cola drinks during the last 40 min of SS and TT: decaffeinated, 6% CHO (control); caffeinated, 6% CHO; decaffeinated, 11% CHO; and caffeinated, 11% CHO (Coke). Coke enhanced TT by 3.3% (0.8-5.9%), with all trials showing 2.2% TT enhancement (0.5-3.8%; P < 0.05) due to caffeine. Overall, 1) 6 mg/kg caffeine enhanced TT performance independent of timing of intake and 2) replacing sports drink with Coca-Cola during the latter stages of exercise was equally effective in enhancing endurance performance, primarily due to low intake of caffeine (approximately 1.5 mg/kg).  相似文献   

8.
R. J. Timpson 《CMAJ》1977,117(6):644-646
General practitioners must become more knowledgeable about sports medicine in order both to treat the injured athlete and to provide better rehabilitative treatment and advice on fitness and exercise to other patients. Close involvement with young amateur athletes also helps to keep the older physician "in tune" with the younger generation. Finances remain a major problem for amateur sporting events and sports medicine groups, as well as for the individual physician volunteering his time.  相似文献   

9.
The aim of this study was to examine hydrogen (H2) production with the hydrogen breath test (HBT) after ingesting primarily digestible carbohydrate (CHO) during 3 h of 75% maximal oxygen consumption exercise. This was done to indicate CHO overflow in the colon which may occur when gastric emptying, intestinal transit and CHO absorption are not matched and CHO accumulates in the colon where it is subject to bacterial degradation. Further, this study was designed to assess breath H2 production as a function of the type of CHO ingested and the type of exercise. A group of 32 male triathletes performed three exercise trials at 1-week intervals with either a semi-solid (S) intake, an equal energy fluid intake (F) or a fluid placebo (P). Each trial consisted of cycling (sessions 1 and 3) and running (sessions 2 and 4). The mixed-expired H2 concentrations in the resting and recovery periods (5 min after each session) did not change significantly in. time and did not differ among intakes. There were also no significant differences in H2 concentrations between resting and recovery conditions. During exercise, H2 concentrations decreased three to six-fold in comparison to resting and recovery levels and differed among intakes (ANOVA;P < 0.05). The H2 on concentrations were almost continuously lower with P than with F and S. The H2 concentrations were significantly higher during running than during cycling. During exercise, we found that CHO overflow could be compared among intakes and between exercise types by using the HBT, provided the influence of other factors on H2 excretion — ventilation and intestinal blood flow — was similar for each condition.  相似文献   

10.
The ergogenic effects of caffeine on athletic performance have been shown in many studies, and its broad range of metabolic, hormonal, and physiologic effects has been recorded, as this review of the literature shows. However, few caffeine studies have been published to include cognitive and physiologic considerations for the athlete. The following practical recommendations consider the global effects of caffeine on the body: Lower doses can be as effective as higher doses during exercise performance without any negative coincidence; after a period of cessation, restarting caffeine intake at a low amount before performance can provide the same ergogenic effects as acute intake; caffeine can be taken gradually at low doses to avoid tolerance during the course of 3 or 4 days, just before intense training to sustain exercise intensity; and caffeine can improve cognitive aspects of performance, such as concentration, when an athlete has not slept well. Athletes and coaches also must consider how a person's body size, age, gender, previous use, level of tolerance, and the dose itself all influence the ergogenic effects of caffeine on sports performance.  相似文献   

11.
The purpose of this study was to determine if Omega 3 Chia seed loading is a viable option for enhancing sports performance in events lasting >90 minutes and allow athletes to decrease their dietary intake of sugar while increasing their intake of Omega 3 fatty acids. It has been well documented that a high dietary carbohydrate (CHO) intake for several days before competition is known to increase muscle glycogen stores resulting in performance improvements in events lasting >90 minutes. This study compared performance testing results between 2 different CHO-loading treatments. The traditional CHO-loading treatment served as the control (100% cals from Gatorade). The Omega 3 Chia drink (50% of calories from Greens Plus Omega 3 Chia seeds, 50% Gatorade) served as the Omega 3 Chia loading drink. Both CHO-loading treatments were based on the subject's body weight and were thus isocaloric. Six highly trained male subjects V(O2)max 47.8-84.2 ml · kg(-1); mean (SD) of V(O2)max 70.3 ml · kg(-1) (13.3) performed a 1-hour run at ~65% of their V(O2)max on a treadmill, followed by a 10k time trial on a track. There were 2 trials in a crossover counterbalanced repeated-measures design with a 2-week washout between testing sessions to allow the participants to recover from the intense exercise and any effects of the treatment. There was no statistical difference (p = 0.83) between Omega 3 Chia loading (mean 10k time = 37 minutes 49 seconds) and CHO loading (mean = 37 minutes 43 seconds). Under our conditions, Omega 3 Chia loading appears a viable option for enhancing performance for endurance events lasting >90 minutes and allows athletes to decrease their dietary intake of sugar while increasing their intake of Omega 3 fatty acids but offered no performance advantages.  相似文献   

12.
Hyperhydration with glycerol solutions   总被引:1,自引:0,他引:1  
Glycerol was tested as an agent to promote hyperhydration of male and female subjects. Series I experiments involved ingesting 0.5, 1.0, or 1.5 g glycerol/kg body wt and within 40 min drinking 0.1% NaCl, 21.4 ml/kg. In series II, 1.0 g glycerol/kg body wt was ingested at time 0, and 25.7 ml/kg of 0.1% NaCl was ingested over a 3.5-h period. Experiments were of 4-h duration and included controls without glycerol as each subject served as his/her control. Blood samples were taken at 40- or 60-min intervals for hemoglobin (Hb), hematocrit (Hct), plasma osmolality, glycerol, and multiple blood chemistry analyses. Urine was collected at 60-min intervals. Glycerol ingestion increased plasma osmolality for 2 h and reduced the total 4-h urine volume. There were no significant changes in Hb or Hct as a result of the glycerol or excess fluid intake. This study demonstrates that glycerol plus excess fluid intake can produce hyperhydration for at least 4 h.  相似文献   

13.
The effect of carbohydrate intake before and during exercise on muscle glycogen content was investigated. According to a randomized crossover study design, eight young healthy volunteers (n = 8) participated in two experimental sessions with an interval of 3 wk. In each session subjects performed 2 h of constant-load bicycle exercise ( approximately 75% maximal oxygen uptake). On one occasion (CHO), they received carbohydrates before ( approximately 150 g) and during (1 g.kg body weight(-1).h(-1)) exercise. On the other occasion they exercised after an overnight fast (F). Fiber type-specific relative glycogen content was determined by periodic acid Schiff staining combined with immunofluorescence in needle biopsies from the vastus lateralis muscle before and immediately after exercise. Preexercise glycogen content was higher in type IIa fibers [9.1 +/- 1 x 10(-2) optical density (OD)/microm(2)] than in type I fibers (8.0 +/- 1 x 10(-2) OD/microm(2); P < 0.0001). Type IIa fiber glycogen content decreased during F from 9.6 +/- 1 x 10(-2) OD/microm(2) to 4.5 +/- 1 x 10(-2) OD/microm(2) (P = 0.001), but it did not significantly change during CHO (P = 0.29). Conversely, in type I fibers during CHO and F the exercise bout decreased glycogen content to the same degree. We conclude that the combination of carbohydrate intake both before and during moderate- to high-intensity endurance exercise results in glycogen sparing in type IIa muscle fibers.  相似文献   

14.
This paper reviews succinctly the evidence for a role of regular exercise in the prevention and the treatment of obesity and of its metabolic complications. Seventeen propositions relevant to an understanding of the topic are considered. The evidence suggests that regular exercise can be an important factor in the development of sustained negative energy balance conditions provided the volume of activity is high. This implies a program of low to moderate intensity exercise performed on an almost daily basis for at least one hour per session. To induce significant weight and fat losses and to treat overweight and obese patients, compliance to the program for several years becomes a necessity. Exercise increases lipid substrate oxidation and may favor carbohydrate intake for the same amount of energy intake. The acute effects of exercise on resting metabolic rate are well documented, but the long-term influences of exercise training seem to be small and are rapidly suppressed with the cessation of training. The obese benefits also from a regular exercise regimen in terms of improved insulin sensitivity, lipid and lipoprotein profile, and blood pressure, as well as reduced risk of death. Regular exercise, such as walking, is a healthy course of action for the overweight or the obese patients.  相似文献   

15.
The restorative capacities of a high carbohydrate-protein (CHO-PRO) beverage containing electrolytes and a traditional 6% carbohydrate-electrolyte sports beverage (SB) were assessed after glycogen-depleting exercise. Postexercise ingestion of the CHO-PRO beverage, in comparison with the SB, resulted in a 55% greater time to exhaustion during a subsequent exercise bout at 85% maximum oxygen consumption (VO(2)max). The greater recovery after the intake of the CHO-PRO beverage could be because of a greater rate of muscle glycogen storage. Therefore, a second study was designed to investigate the effects of after exercise CHO-PRO and SB supplements on muscle glycogen restoration. Eight endurance-trained cyclists (VO(2)max = 62.1 +/- 2.2 ml.kg(-1) body wt.min(-1)) performed 2 trials consisting of a 2-hour glycogen-depletion ride at 65-75% VO(2)max. Carbohydrate-protein (355 ml; approximately 0.8 g carbohydrate (CHO).kg(-1) body wt and approximately 0.2 g protein.kg(-1) body wt) or SB (355 ml; approximately 0.3 g CHO.kg(-1) body wt) was provided immediately and 2 hours after exercise. Trials were randomized and separated by 7-15 days. Ingestion of the CHO-PRO beverage resulted in a 17% greater plasma glucose response, a 92% greater insulin response, and a 128% greater storage of muscle glycogen (159 +/- 18 and 69 +/- 32 micromol.g(-1) dry weight for CHO-PRO and SB, respectively) compared with the SB (p < 0.05). These findings indicate that the rate of recovery is coupled with the rate of muscle glycogen replenishment and suggest that recovery supplements should be consumed to optimize muscle glycogen synthesis as well as fluid replacement.  相似文献   

16.
The purpose of this case study is to demonstrate the treatment of patella-femoral knee pain in an adolescent female athlete with emphasis on neuromuscular training of the knee and hip in synergy movement strategies. A 1.67-m, 61.5-kg, 15-year-old woman athlete reported to rehabilitation with the complaint of a 1-year history of bilateral knee pain. The patient noted that the symptoms were exacerbated with any sports-specific training. The patient played softball as an infielder. The athlete was referred by her family practice physician. After the patient was assessed, a clinical hypothesis was generated. It was thought that neuromuscular dysfunction of the hips and knees was causing faulty knee mechanics. These abnormal mechanics were presenting as patella-femoral knee pain. Initially, the athlete was assigned a home exercise program of side-lying hip abduction and lateral step-downs. At her first follow-up appointment, she noted increased symptoms that were aggravated with her home program. Upon inspecting her exercise technique, faulty step-down mechanics were contributing to her symptoms. Step-downs were discontinued, and the patient was instructed in and performed a chair squatting exercise, which was added to her home program. At her next follow-up, the patient noted being asymptomatic for 2 days. Her exercises were increased in intensity to include a Stairmaster and hip abduction and adduction on a 4-way hip machine. Eventually, over her treatment course, perturbation and proprioceptive training were initiated. By the sixth visit, the patient reported no symptoms and felt comfortable with self-management. A phone interview 3 months later indicated that the patient had no recurrent symptoms and was participating in sports without difficulty. This case demonstrates effectiveness of using hip and knee joint synergy to treat patella-femoral pain (PFP). The use of this synergy promotes proper patella–femoral alignment and improved knee mechanics. This case also is unique in the lack of physical agents and taping used to improve the patient's condition. It reinforces how exercise technique can carry over to functional athletic activities. This study provides a case for the use of hip and knee mechanical retraining in the treatment of PFP in adolescent female athletes who do not exhibit abnormal foot mechanics in weight bearing. It is important that sports medicine professionals be aware of these treatment options and are able to use them to correct these deficits in order to facilitate return to training and competition as quickly and safely as possible.  相似文献   

17.
To prevent thermal injuries during distance running, the American College of Sports Medicine proposes that between 0.83 and 1.65 l of water should be ingested each hour during prolonged exercise. Yet such high rates of fluid intake have been reported to cause water intoxication. To establish the freely-chosen rates of fluid intake during prolonged competitive exercise, we measured fluid intake during, body weight before and after, and rectal temperature after competition in a total of 102 runners and 91 canoeists competing in events lasting from 170-340 min. Fluid intakes during competition ranged from 0.29-0.62 l.h-1; rates of water loss ranged from 0.69-1.27 l.h-1 in the runners; values were lower in the canoeists. Mean post-race rectal temperatures ranged from 38.0-39.0 degrees C. There was no relationship between the degree of dehydration and post-race rectal temperature. We conclude that hyperthermia is uncommon in prolonged competitive events held in mild environmental conditions, and that exercise intensity, not the level of dehydration, is probably the most important factor determining the postexercise rectal temperature. During prolonged exercise in mild environmental conditions, a fluid intake of 0.5 l.h-1 will prevent significant dehydration in the majority of athletes.  相似文献   

18.
Ingestion of a protein-amino acid mixture (Pro; wheat protein hydrolysate, leucine, and phenylalanine) in combination with carbohydrate (CHO; 0.8 g x kg(-1) x h(-1)) has been shown to increase muscle glycogen synthesis after exercise compared with the same amount of CHO without Pro. The aim of this study was to investigate whether coingestion of Pro also increases muscle glycogen synthesis when 1.2 g CHO. kg(-1). h(-1) is ingested. Eight male cyclists performed two experimental trials separated by 1 wk. After glycogen-depleting exercise, subjects received either CHO (1.2 g x kg(-1) x h(-1)) or CHO+Pro (1.2 g CHO x kg(-1) x h(-1) + 0.4 g Pro x kg(-1) x h(-1)) during a 3-h recovery period. Muscle biopsies were obtained immediately, 1 h, and 3 h after exercise. Blood samples were collected immediately after the exercise bout and every 30 min thereafter. Plasma insulin was significantly higher in the CHO+Pro trial compared with the CHO trial (P < 0.05). No difference was found in plasma glucose or in rate of muscle glycogen synthesis between the CHO and the CHO+Pro trials. Although coingestion of a protein amino acid mixture in combination with a large CHO intake (1.2 g x kg(-1) x h(-1)) increases insulin levels, this does not result in increased muscle glycogen synthesis.  相似文献   

19.
Muscle fibers are generally fractionated into type I, IIA, and IIX fibers. Type I fibers specialize in long duration contractile activities and are found in abundance in elite endurance athletes. Conversely type IIA and IIX fibers facilitate short-duration anaerobic activities and are proportionally higher in elite strength and power athletes. A central area of interest concerns the capacity of training to increase or decrease fiber types to enhance high-performance activities. Although interconversions between type IIA and IIX are well recognized in the literature, there are conflicting studies regarding the capacity of type I and II fibers to interconvert. Therefore, the purpose of this article is to analyze the effects of various forms of exercise on type I and type II interconversions. Possible variables that may increase type II fibers and decrease type I fibers are discussed, and these include high velocity isokinetic contractions; ballistic movements such as bench press throws and sprints. Conversely, a shift from type II to type I fibers may occur under longer duration, higher volume endurance type events. Special care is taken to provide practical applications for both the scientist and the athlete.  相似文献   

20.
The purpose of this study was to compare 4 interval training (IT) sessions with different intensities and durations of exercise to determine the effect on mean VO?, total VO?, and duration of exertion ≥95% maximum power output (MPO), and the effects on biomarkers of fatigue such as blood-lactate concentration (BLC) and rating of perceived exertion. The subjects were 12 recreationally competitive male (n = 7, mean ± SD age = 26.2 ± 3.9 years) and female (n = 5, mean ± SD age = 27.6 ± 4.3 years) triathletes. These subjects performed 4 IT sessions on a cycle ergometer varying in intensity (90 and 100% MPO) and duration of exercise (30 seconds and 3 minutes). This study revealed that IT using 30-second duration intervals (30-30 seconds) allows the athlete to perform a longer session, with a higher total and mean VO? HR and lower BLC than 3-minute durations. Similarly, submaximal exertion at 90% of MPO also allows performing longer sessions with a higher total VO? than 100% intensity. Thus, the results of the present study suggested that to increase the total time at high intensity of exercise and total VO? of a single exercise session performed by the athlete, IT protocols of short durations (i.e., 30 seconds) and submaximal intensities (i.e., 90% MPO) should be selected. Furthermore, performing short-duration intervals may allow the athlete to complete a longer IT session with greater metabolic demands (VO?) and lower BLC than longer (i.e., 3 minutes) intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号