首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
成纤维细胞生长因子受体(FGFR)介导的SNT1(亦称为FRS2)底物磷酸化具有宿主细胞以及受体特异性。为探明这种宿主细胞特异性的决定因素,我们构建了1个FGFR2IIIb/R1嵌合受体。该嵌合受体具有1个FGFR2IIIb的胞外片段及1个FGFR1蛋白质酪氨酸激酶片段。当表达在3T3细胞(内源性受体为FGFR1并能强烈响应FGFR1)的信号)以及DTE-R1/100细胞时,该嵌合受体能即刻诱导SNT1磷酸化。DTE-R1/100细胞为经长期培养的带有外源性FGFR1的非恶性前列腺肿瘤上皮细胞(DTE)并已获得未转化DTE细胞所不具备的FGFR1信号响应性。与此相反,当表达在非转化DTE细胞或未经长期培养的FGFR1(DTE-R1)锂,FGFR2IIIb/R1嵌合受体则无法诱导SNT1磷酸化。我们曾报导DTE细胞对FGFR1介导的SNT1磷酸化活力及其刺激细胞生长信号的响应性是一种获得性的性质,这种性质的获得与细胞恶化是紧密联系在一起的。在此我们进一步证明FGFR介导的SNT1磷酸化具有宿主细胞特异性。这些结果表明细胞内围绕着激酶的微环境而不是细胞外环境决定了SNT1是否可为FGFR1所磷酸化。而且,长期受外源性FGFR1刺激诱发DTE细胞内微环境的变化,从而使表达在DTE细胞里的FGFR1激酶可强烈地磷酸化SNT1。  相似文献   

2.
成纤维细胞生长因子受体(FGFR)介导的SNT1(亦称为FRS2)底物磷酸化具有宿主细胞以及受体特异性。为探明这种宿主细胞特异性的决定因素,我们构建了1个FGFR2Ⅲb/R1嵌合受体。该嵌合受体具有1个FGFR2Ⅲb的胞外片段及1个FGFR1蛋白质酪氨酸激酶片断。当表达在3T3细胞(内源性受体为FGFR1并能强烈响应FGFR1的信号)以及DTE-R1/100细胞时,该嵌合受体能即刻诱导SNT1磷酸化。DTE-R1/100细胞为经长期培养的带有外源性FGFR1的非恶性前列腺肿瘤上皮细胞(DTE)并已获得未转化DTE细胞所不具备的FGFR1信号响应性。与此相反,当表达在非转化DTE细胞或未经长期培养的FGFR1转化细胞(DTE-R1)时,FGFR2Ⅲb/R1嵌合受体则无法诱导SNT1磷酸化。我们曾报导DTE细胞对FGFR1介导的SNT1磷酸化活力及其刺激细胞生长信号的响应性是一种获得性的性质,这种性质的获得与细胞恶化是紧密联系在一起的。在此我们进一步证明FGFR介导的SNT1磷酸化具有宿主细胞特异性。这些结果表明细胞内围绕着激酶的微环境而不是细胞外环境决定了SNT1是否可为FGFR1所磷酸化。而且,长期受外源性FGFR1刺激诱发DTE细胞内微环境的变化,从而使表达在DTE细胞里的FGFR1激酶可强烈地磷酸化SNT1。  相似文献   

3.
The non-receptor tyrosine kinase Src is recruited to activated fibroblast growth factor receptor (FGFR) complexes through the adaptor protein factor receptor substrate 2 (FRS2). Here, we show that Src kinase activity has a crucial role in the regulation of FGFR1 signalling dynamics. Following receptor activation by ligand binding, activated Src is colocalized with activated FGFR1 at the plasma membrane. This localization requires both active Src and FGFR1 kinases, which are inter-dependent. Internalization of activated FGFR1 is associated with release from complexes containing activated Src. Src-mediated transport and subsequent activation of FGFR1 require both RhoB endosomes and an intact actin cytoskeleton. Chemical and genetic inhibition studies showed strikingly different requirements for Src family kinases in FGFR1-mediated signalling; activation of the phosphoinositide-3 kinase-Akt pathway is severely attenuated, whereas activation of the extracellular signal-regulated kinase pathway is delayed in its initial phase and fails to attenuate.  相似文献   

4.
A partnership between the ectodomain of the fibroblast growth factor receptor (FGFR) isotypes and the chains of pericellular matrix heparan sulfate determines the fibroblast growth factor (FGF) and cell-type specificitives of the FGFR signaling complex. The contribution of the FGFR intracellular tyrosine kinase domains to the specificity of FGFR signaling is unclear. This report shows that the quantity and quality of phosphorylation of the FGFR kinase substrate SNT1 (also called FGFR substrate 2, FRS2) is both FGFR isotype and cell-type specific in prostate tumor epithelial cells at different stages of malignancy. Epithelial cell-resident FGFR2 that promotes homeostasis yields a low level of phosphorylated 65-kDa SNT1. Phosphorylation by ectopic FGFR1 that promotes malignancy was much more intense and yielded a phosphorylated 85-kDa SNT1. The amount of the 85-kDa SNT1 increased by 20-fold during proliferative aging of FGFR1-expressing cell populations that is required for FGFR1-stimulated mitogenesis and the malignant phenotype. In addition, the receptor-specific differential phosphorylation of SNT1 by FGFR isotypes, both of which are normally anchored to the cell membrane, occurred only in intact cells. Therefore, similar to kinase subunits within the heparan sulfate-FGFR complex, cell membrane and cytoskeletal context likely determine FGFR isotype- and cell-type-specific conformational relationships between FGFR kinases and external substrates. This determines the quantity and quality of SNT1 phosphorylation and differential signaling.  相似文献   

5.
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.  相似文献   

6.
7.
The family of fibroblast growth factor receptors (FGFRs) plays an important and well-characterized role in a variety of pathological disorders. FGFR4 is involved in myogenesis and muscle regeneration. Mutations affecting the kinase domain of FGFR4 may cause cancer, for example, breast cancer or rhabdomyosarcoma. Whereas FGFR1–FGFR3 have been structurally characterized, the structure of the FGFR4 kinase domain has not yet been reported. In this study, we present four structures of the kinase domain of FGFR4, in its apo-form and in complex with different types of small-molecule inhibitors. The two apo-FGFR4 kinase domain structures show an activation segment similar in conformation to an autoinhibitory segment observed in the hepatocyte growth factor receptor kinase but different from the known structures of other FGFR kinases. The structures of FGFR4 in complex with the type I inhibitor Dovitinib and the type II inhibitor Ponatinib reveal the molecular interactions with different types of kinase inhibitors and may assist in the design and development of FGFR4 inhibitors.  相似文献   

8.
The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here, we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(-16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(-16) coincided with that of wild-type FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T(1/2)-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.  相似文献   

9.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11, 5-HT2R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2R-mediated FGFR2 transactivation in C6 cells.  相似文献   

10.
Fibroblast growth factor receptor (FGFR) activation leads to receptor autophosphorylation and increased tyrosine phosphorylation of several intra cellular proteins. We have previously shown that autophosphorylated tyrosine 766 in FGFR1 serves as a binding site for one of the SH2 domains of phospholipase Cy and couples FGFR1 to phosphatidylinositol hydrolysis in several cell types. In this report, we describe the identification of six additional autophosphorylation sites (Y-463, Y-583, Y-585, Y-653, Y-654 and Y-730) on FGFR1. We demonstrate that autophosphorylation on tyrosines 653 and 654 is important for activation of tyrosine kinase activity of FGFR1 and is therefore essential for FGFR1-mediated biological responses. In contrast, autophosphorylation of the remaining four tyrosines is dispensable for FGFR1-mediated mitogen-activated protein kinase activation and mitogenic signaling in L-6 cells as well as neuronal differentiation of PC12 cells. Interestingly, both the wild-type and a mutant FGFR1 (FGFR1-4F) are able to phosphorylate Shc and an unidentified Grb2-associated phosphoprotein of 90 kDa (pp90). Binding of the Grb2/Sos complex to phosphorylated Shc and pp90 may therefore be the key link between FGFR1 and the Ras signaling pathway, mito-genesis, and neuronal differentiation.  相似文献   

11.
Binding of the fibroblast growth factor (FGF) to the FGF receptor (FGFR) tyrosine kinase leads to receptor tyrosine autophosphorylation as well as phosphorylation of multiple downstream signaling molecules that are recruited to the receptor either by direct binding or through adaptor proteins. The FGFR substrate 2 (FRS2) family consists of two members, FRS2alpha and FRS2beta, and has been shown to recruit multiple signaling molecules, including Grb2 and Shp2, to FGFR1. To better understand how FRS2 interacted with FGFR1, in vivo binding assays with coexpressed FGFR1 and FRS2 recombinant proteins in mammalian cells were carried out. The results showed that the interaction of full-length FRS2alpha, but not FRS2beta, with FGFR1 was enhanced by activation of the receptor kinase. The truncated FRS2alpha mutant that was comprised only of the phosphotyrosine-binding domain (PTB) bound FGFR1 constitutively, suggesting that the C-terminal sequence downstream the PTB domain inhibited the PTB-FGFR1 binding. Inactivation of the FGFR1 kinase and substitutions of tyrosine phosphorylation sites of FGFR1, but not FRS2alpha, reduced binding of FGFR1 with FRS2alpha. The results suggest that although the tyrosine autophosphorylation sites of FGFR1 did not constitute the binding sites for FRS2alpha, phosphorylation of these residues was essential for optimal interaction with FRS2alpha. In addition, it was demonstrated that the Grb2-binding sites of FRS2alpha are essential for mediating signals of FGFR1 to activate the FiRE enhancer of the mouse syndecan 1 gene. The results, for the first time, demonstrate the specific signals mediated by the Grb2-binding sites and further our understanding of FGF signal transmission at the adaptor level.  相似文献   

12.

Background

Fibronectin leucine rich transmembrane (FLRT) proteins have dual properties as regulators of cell adhesion and potentiators of fibroblast growth factor (FGF) mediated signalling. The mechanism by which the latter is achieved is still unknown and is the subject of this investigation.

Principal Findings

Here we show that FLRT1 is a target for tyrosine phosphorylation mediated by FGFR1 and implicate a non-receptor Src family kinase (SFK). We identify the target tyrosine residues in the cytoplasmic domain of FLRT1 and show that these are not direct substrates for Src kinase suggesting that the SFK may exert effects via potentiation of FGFR1 kinase activity. We show that whilst FLRT1 expression results in a ligand-dependent elevation of MAP kinase activity, a mutant version of FLRT1, defective as an FGFR1 kinase substrate (Y3F-FLRT1), has the property of eliciting ligand-independent chronic activation of the MAP kinase pathway which is suppressed by pharmacological inhibition of either FGFR1 or Src kinase. Functional investigation of FGFR1 and FLRT1 signalling in SH-SY5Y neuroblastoma cells reveals that FLRT1 alone acts to induce a multi-polar phenotype whereas the combination of FLRT1 and FGFR activation, or expression of Y3F-FLRT1, acts to induce neurite outgrowth via MAPK activation. Similar results were obtained in a dendrite outgrowth assay in primary hippocampal neurons. We also show that FGFR1, FLRT1 and activated Src are co-localized and this complex is trafficked toward the soma of the cell. The presence of Y3F-FLRT1 rather than FLRT1 resulted in prolonged localization of this complex within the neuritic arbour.

Conclusions

This study shows that the phosphorylation state of FLRT1, which is itself FGFR1 dependent, may play a critical role in the potentiation of FGFR1 signalling and may also depend on a SFK-dependent phosphorylation mechanism acting via the FGFR. This is consistent with an ‘in vivo’ role for FLRT1 regulation of FGF signalling via SFKs. Furthermore, the phosphorylation-dependent futile cycle mechanism controlling FGFR1 signalling is concurrently crucial for regulation of FLRT1-mediated neurite outgrowth.  相似文献   

13.
Fibroblast growth factor receptor 1 (FGFR1) is a transmembrane protein capable of transducing stimulation by secreted FGFs. In addition, newly synthesized FGFR1 enters the nucleus in response to cellular stimulation and during development. Nuclear FGFR1 can transactivate CRE (cAMP responsive element), activate CRE-binding protein (CREB)-binding protein (CBP) and gene activities causing cellular growth and differentiation. Here, a yeast two-hybrid assay was performed to identify FGFR1-binding proteins and the mechanism of nuclear FGFR1 action. Ten FGFR1-binding proteins were identified. Among the proteins detected with the intracellular FGFR1 domain was a 90-kDa ribosomal S6 kinase (RSK1), a regulator of CREB, CBP, and histone phosphorylation. FGFR1 bound to the N-terminal region of RSK1. The FGFR1-RSK1 interaction was confirmed by co-immunoprecipitation and colocalization in the nucleus and cytoplasm of mammalian cells. Predominantly nuclear FGFR1-RSK1 interaction was observed in the rat brain during neurogenesis and in cAMP-stimulated cultured neural cells. In TE671 cells, transfected FGFR1 colocalized and coimmunoprecipitated, almost exclusively, with nuclear RSK1. Nuclear RSK1 kinase activity and RSK1 activation of CREB were enhanced by transfected FGFR1. In contrast, kinase-deleted FGFR1 (TK-), which did not bind to RSK1 failed to stimulate nuclear RSK1 activity or RSK1 activation of CREB. Kinase inactive FGFR1 (K514A) bound effectively to nuclear RSK1, but it failed to stimulate RSK1. Thus, active FGFR1 kinase regulates the functions of nuclear RSK1. The interaction of nuclear FGFR1 with pluripotent RSK1 offers a new mechanism through which FGFR1 may control fundamental cellular processes.  相似文献   

14.
The ZNF198‐fibroblast growth factor receptor‐1 (FGFR1) fusion kinase is a constitutively activated tyrosine kinase associated with a specific atypical myeloproliferative disease. The chimeric protein localizes to the cytoplasm, unlike the wild type FGFR1 receptor kinase, and presumably inappropriately phosphorylates specific targets as part of the oncogenic signaling cascade. Other than known targets of the FGFR1 kinase itself, few specific targets of ZNF198‐FGFR1 have been identified. Using a genetically engineered HEK 293 cell system, we have identified proteins that are specifically phosphorylated in the presence of the fusion kinase using anti‐phosphotyrosine immunoprecipitation and MS. Compared with 293 cells expressing exongenous wild type FGFR1, ZNF198‐FGFR1 is associated with phosphorylation of several proteins including SSBP2, ABL, FLJ14235, CALM and TRIM4 proteins. The specificity of the phosphorylation events in the SSBP2 and ABL proteins, which have previously been implicated in leukemogenesis, was further confirmed independently using immunoprecipitation with protein‐specific antibodies and Western blotting. The MS analysis also identified the phosphorylation events in the ZNF198 moiety in the chimeric protein that might be related to its function. These studies identify the intersection of several different leukemia‐related pathways in the development of this myeloproliferative disorder and provide new insights into the substrates of FGFR1 under defined conditions.  相似文献   

15.
Among the seven tyrosine autophosphorylation sites identified in the intracellular domain of tyrosine kinase fibroblast growth factor receptor-1 (FGFR1), five of them are dispensable for FGFR1-mediated mitogenic signaling. The possibility of dissociating the mitogenic activity of basic FGF (FGF2) from its urokinase-type plasminogen activator (uPA)-inducing capacity both at pharmacological and structural levels prompted us to evaluate the role of these autophosphorylation sites in transducing FGF2-mediated uPA upregulation. To this purpose, L6 myoblasts transfected with either wild-type (wt) or various FGFR1 mutants were evaluated for the capacity to upregulate uPA production by FGF2. uPA was induced in cells transfected with wt-FGFR1, FGFR1-Y463F, -Y585F, -Y730F, -Y766F, or -Y583/585F mutants. In contrast, uPA upregulation was prevented in L6 cells transfected with FGFR1-Y463/583/585/730F mutant (FGFR1–4F) or with FGFR1-Y463/583/585/730/766F mutant (FGFR1–5F) that retained instead a full mitogenic response to FGF2; however, preservation of residue Y730 in FGFR1-Y463/583/585F mutant (FGFR1–3F) and FGFR1-Y463/583/585/766F mutant (FGFR1–4Fbis) allows the receptor to transduce uPA upregulation. Wild-type FGFR1, FGFR1–3F, and FGFR1–4F similarly bind to a 90-kDa tyrosine-phosphorylated protein and activate Shc, extracellular signal-regulated kinase (ERK)2, and JunD after stimulation with FGF2. These data, together with the capacity of the ERK kinase inhibitor PD 098059 to prevent ERK2 activation and uPA upregulation in wt-FGFR1 cells, suggest that signaling through the Ras/Raf-1/ERK kinase/ERK/JunD pathway is necessary but not sufficient for uPA induction in L6 transfectants. Accordingly, FGF2 was able to stimulate ERK1/2 phosphorylation and cell proliferation, but not uPA upregulation, in L6 cells transfected with the FGFR1-Y463/730F mutant, whereas the FGFR1-Y583/585/730F mutant was fully active. We conclude that different tyrosine autophosphorylation requirements in FGFR1 mediate cell proliferation and uPA upregulation induced by FGF2 in L6 cells. In particular, phosphorylation of either Y463 or Y730, dispensable for mitogenic signaling, represents an absolute requirement for FGF2-mediated uPA induction.  相似文献   

16.
In an effort to determine the localization of fibroblast growth factor (FGF) receptors (FGFR) that could mediate the intracellular action of FGF-2, we discovered the presence of high-affinity. FGF-2 binding sites in the nuclei of bovine adrenal medullary cells (BAMC). Western blot analysis demonstrated the presence of 103-, 118-, and 145-kDa forms of FGFR1 in nuclei isolated from BAMC. 125I-FGF-2 cross-linking to nuclear extracts followed by FGFR1 immunoprecipitation showed that FGFR1 can account for the nuclear FGF-2 binding sites. Nuclear FGFR1 has kinase activity and undergoes autophosphorylation. Immunocytochemistry with the use of confocal and electron microscopes demonstrated the presence of FGFR1 within the nuclear interior. Nuclear subfractionation followed by Western blot or immunoelectron microscopic analysis showed that the nuclear FGFR1 is contained in the nuclear matrix and the nucleoplasm. Agents that induce translocation of endogenous FGF-2 to the nucleus (forskolin, carbachol, or angiotensin II) increased the intranuclear accumulation of FGFR1. This accumulation was accompanied by an overall increase in FGF-2-inducible tyrosine kinase activity. Our findings suggest a novel mode for growth factor action whereby growth factor receptors translocate to the nucleus in parallel with their ligand and act as direct mediators of nuclear responses to cell stimulation.  相似文献   

17.
Fibroblast growth factor 1 (FGF1) has the property to become translocated from the extracellular space into the cell cytosol and nucleus. Membrane translocation of FGF1 occurs subsequent to endocytic uptake and is strictly FGF-receptor (FGFR) dependent. Here we have investigated the timing of FGF1 translocation in relation to FGFR1 signalling. We found that the translocation of FGF1 is a periodic event that occurs with 24 h intervals. Serum-starved cells translocated the growth factor with peak occurrences ~ 6 h, ~ 30 h, and ~ 54 h after the addition of FGF1. The periodic FGF1 translocation was totally independent of the FGFR1 tyrosine kinase activity as it proceeded unchanged when the kinase activity was chemically inhibited or the kinase domain was deleted. Furthermore, FGF1 translocation was not restricted to a particular phase of the cell cycle or dependent on cell cycle progression. The results demonstrate that the FGF1/FGFR1 complex constitutes a signalling module that independently of the receptor tyrosine kinase can convey a signal that initiates a strictly timed and periodic release of endocytosed FGF1 into the cytosol/nucleus.  相似文献   

18.
19.
Fibroblast growth factors (FGFs) are upstream activators of the mitogen-activated protein kinase pathway and mitogens in a wide variety of cells. However, whether the mitogen-activated protein kinase pathway solely accounts for the induction of cell cycle or antiapoptotic activity of the FGF receptor (FGFR) tyrosine kinase is not clear. Here we report that cell cycle inducer Cks1, which triggers ubiquitination and degradation of p27(Kip1), associates with the unphosphorylated form of FGFR substrate 2 (FRS2), an adaptor protein that is phosphorylated by FGFR kinases and recruits downstream signaling molecules. FGF-dependent activation of FGFR tyrosine kinases induces FRS2 phosphorylation, causes release of Cks1 from FRS2, and promotes degradation of p27(Kip1) in 3T3 cells. Since degradation of p27(Kip1) is a key regulatory step in activation of the cyclin E/A-Cdk complex during the G(1)/S transition of the cell cycle, the results suggest a novel mitogenic pathway whereby FGF and other growth factors that activate FRS2 directly activate cyclin-dependent kinases.  相似文献   

20.
Cadherin-11 is a cell–cell adhesion molecule whose expression is often correlated with cellular migratory phenomena. We recently demonstrated that cadherin-11 activation by immobilized cad11–Fc (cadherin-11 ectodomain fused to Fc fragment) promotes axonal extension of spinal cord explants. Here, we show that this induced neurite outgrowth is dependent on the FGF receptor (FGFR) activity. Downstream, DAG lipase/CAM kinase and PI3 kinase pathways are required, but not the MAP kinase signalling. We also demonstrate that a tagged form of FGFR1 co-immunoprecipitates with β-catenin containing cadherin-11 immunocomplexes. FGFR1 and β-catenin show colocalization and enhanced association during cadherin-11 engagement, suggesting that FGFR1 interaction with cadherin-11 adhesion complexes is reinforced during cell contact formation. In vitro pull-down experiments using recombinant ectodomains suggest that cadherin-11/FGFR interact directly through their extracellular domains. Altogether, we propose that cadherin-11 recruits the FGFR upon adhesive engagement at nascent contacts, triggering the activation of downstream pathways involved in growth cone progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号