首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Helminth parasites cause untold morbidity and mortality to billions of people and livestock. Anthelmintic drugs are available but resistance is a problem in livestock parasites, and is a looming threat for human helminths. Testing the efficacy of available anthelmintic drugs and development of new drugs is hindered by the lack of objective high-throughput screening methods. Currently, drug effect is assessed by observing motility or development of parasites using laborious, subjective, low-throughput methods.

Methodology/Principal Findings

Here we describe a novel application for a real-time cell monitoring device (xCELLigence) that can simply and objectively assess anthelmintic effects by measuring parasite motility in real time in a fully automated high-throughput fashion. We quantitatively assessed motility and determined real time IC50 values of different anthelmintic drugs against several developmental stages of major helminth pathogens of humans and livestock, including larval Haemonchus contortus and Strongyloides ratti, and adult hookworms and blood flukes. The assay enabled quantification of the onset of egg hatching in real time, and the impact of drugs on hatch rate, as well as discriminating between the effects of drugs on motility of drug-susceptible and –resistant isolates of H. contortus.

Conclusions/Significance

Our findings indicate that this technique will be suitable for discovery and development of new anthelmintic drugs as well as for detection of phenotypic resistance to existing drugs for the majority of helminths and other pathogens where motility is a measure of pathogen viability. The method is also amenable to use for other purposes where motility is assessed, such as gene silencing or antibody-mediated killing.  相似文献   

2.
BackgroundThere is a worldwide upscale in mass drug administration (MDA) programs to control the morbidity caused by soil-transmitted helminths (STHs): Ascaris lumbricoides, Trichuris trichiura and hookworm. Although anthelminthic drugs which are used for MDA are supplied by two pharmaceutical companies through donation, there is a wide range of brands available on local markets for which the efficacy against STHs and quality remain poorly explored. In the present study, we evaluated the drug efficacy and quality of two albendazole brands (Bendex and Ovis) available on the local market in Ethiopia.Conclusion/SignificanceThe study revealed that differences in efficacy between the two brands of albendazole (ABZ) tablets against hookworm are linked to the differences in the in-vitro drug release profile. Differences in uptake and metabolism of this benzimidazole drug among different helminth species may explain that this efficacy difference was only observed in hookworms and not in the two other species. The results of the present study underscore the importance of assessing the chemical and physicochemical quality of drugs before conducting efficacy assessment in any clinical trials to ensure appropriate therapeutic efficacy and to exclude poor drug quality as a factor of reduced drug efficacy other than anthelminthic resistance. Overall, this paper demonstrates that “all medicines are not created equal”.  相似文献   

3.
Non-avian attacks of the worldwide distributed mite Dermanyssus gallinae are occasionally reported. However, it is widely accepted that their occurrence is underestimated. The present study aims to describe the first Italian case of dermanyssosis in a dog, to molecularly characterize the mites collected from the patient and the animal enclosure, where poultry and dog were confined, and to review the current literature on the non-avian attacks by D. gallinae. The dog was successfully treated with an oral sarolaner-based product, followed by a spot-on formulation of imidacloprid and moxidectin. The infestation source was likely attributable to poultry and confirmed by molecular identification of D. gallinae sensu strictu.Ten articles on non-avian D. gallinae attacks in domestic animals and wildlife were retrieved, pointing out the need for more awareness amongst practitioners. The therapeutic effect of available antiparasitic drugs, currently used off-label, should also be better explored in non-avian hosts.  相似文献   

4.
The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry in vitro. This blockade may be achieved in vivo through ‘repurposing’ drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics in vitro. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available in vitro data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways in vivo may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry.  相似文献   

5.
Visceral leishmaniasis is an important parasitic disease of the developing world with a limited arsenal of drugs available for treatment. The existing drugs have significant deficiencies so there is an urgent need for new and improved drugs. In the human host, Leishmania are obligate intracellular parasites which poses particular challenges in terms of drug discovery. To achieve sufficient throughput and robustness, free-living parasites are often used in primary screening assays as a surrogate for the more complex intracellular assays. We and others have found that such axenic assays have a high false positive rate relative to the intracellular assays, and that this limits their usefulness as a primary platform for screening of large compound collections. While many different reasons could lie behind the poor translation from axenic parasite to intracellular parasite, we show here that a key factor is the identification of growth slowing and cytostatic compounds by axenic assays in addition to the more desirable cytocidal compounds. We present a screening cascade based on a novel cytocidal-only axenic amastigote assay, developed by increasing starting density of cells and lowering the limit of detection, and show that it has a much improved translation to the intracellular assay. We propose that this assay is an improved primary platform in a new Leishmania screening cascade designed for the screening of large compound collections. This cascade was employed to screen a diversity-oriented-synthesis library, and yielded two novel antileishmanial chemotypes. The approach we have taken may have broad relevance to anti-infective and anti-parasitic drug discovery.  相似文献   

6.
7.
Some drugs are available for the chemoprophylaxis and treatment of all the major protozoal diseases of man. However, such drugs are not always active by the oral route, efficacy is sometimes limited, toxicity can be severe and drug resistance is an increasing problem. Clearly novel drugs, which do not suffer from such problems, are urgently required. Unfortunately, the discovery and development of such drugs poses serious scientific and commercial problems. Despite this, there are real prospects, over the next 10 years, that new treatments will be available for some of the diseases caused by Trypanosoma, Leishmania and Plasmodium, but probably not those caused by Trichomonas, Giardia, Entamoeba and Toxoplasma. The prospects are also good for longer term projects, using highly rational approaches, provided these do not lose sight of the pharmacological hurdles that have to be overcome before the “magic bullet” can strike its target.  相似文献   

8.
Among the neglected tropical diseases, leishmaniasis stands out for its worldwide distribution and diversity of symptoms. Cutaneous leishmaniasis (CL), for instance, is endemic in 18 countries, but the available drugs to fight it have high toxicity and low patient adherence. In order to overcome this, dilemma drugs that target enzymes which are absent in the human host, such as Leishmania braziliensis sterol C24-methyltransferase (SMT-C24, EC 2.1.1.41), are needed. However, medicinal chemistry efforts toward this goal have been hampered by the low yield of soluble recombinant SMT-C24 afforded by currently available expression systems. Herein, we show that a combination of molecular biology and chromatographic strategies may increase the yield of LbSMT-C24 in up to fivefold. These results lay the ground for future investigation of this enzyme as a drug target.  相似文献   

9.
Optimal drug regimens for cancer chemotherapy are determined when knowledge is only available on the behaviour of the tumour and the drugs used, over a population of patients. The case of two drugs is investigated where they are equivalent on average. Our calculations indicate that the optimal regimen has both drugs given initially but then sequences the two drugs. Our calculations also indicate that as tumour heterogeneity increases, the benefit to be gained from the optimal regimen can decrease in comparison to reasonable regimens. This has the effect of complicating the calculation of optimal regimens in a clinical setting, and may explain why results in experimental oncology fail to carry over to clinical oncology.  相似文献   

10.
11.
Parasitic infections by Leishmania parasites remains a severe public health problem, especially in developing countries where it is highly endemic. Chemotherapy still remains a first option for the treatment of those diseases, despite the fact that available drugs exhibit a variety of shortcomings. Thus, innovative, less toxic more affordable and effective antileishmanial agents are urgently needed. The marine environment holds an immeasurable bio- and chemical diversity, being a valuable source of natural products with therapeutic potential. As invertebrates comprise about 60 % of all marine organisms, bioprospecting this class of organisms for antileishmanial properties may unravel unique and selective hit molecules. In this context, this review covers results on the literature of marine invertebrate extracts and pure compounds evaluated against Leishmania parasites mainly by in vitro methods. It comprises results obtained from the phyla Porifera, Cnidaria, Bryozoa (Ectoprota), Mollusca, Echinodermata, Annelida, Cetnophora, Platyhelminthes, sub phyla Crustacea (phylum Arthropoda) and Tunicata (phylum Chordata). Moreover, structure–activity relationships and possible mechanisms of action are mentioned, whenever available information is provided. About 70 species of marine invertebrates belonging to seven different phyla are included in this work. Besides a variety of crude extracts, a total of 140 pure compounds was tested against different Leishmania species. Although the research on the antileishmanial potential of marine invertebrates is in its early beginnings, promising results have been achieved that encourage further research. As more extracts and compounds are being screened, the possibility of finding active and selective antileishmanial molecules increases, rising new hope in the search for new treatments against leishmaniases.  相似文献   

12.
Species distributions reflect limiting factors, particularly near the margins of their range where density and abundance decrease as environmental factors decrease or increase to non-optimal conditions. I test whether the keystone saguaro cactus (Carnegiea gigantea), a shallow-rooted species, is indeed distributed disproportionately in areas of concentrated drainage (runnels) in a water-limited population. Carnegiea and a common nurse were sampled at a marginal site in and out of areas with concentrated surface water and chi-square analysis was used to determine the pattern of distribution. In this study I found that, surprisingly, near the hot, water-limited edge of their range, C. gigantea are found significantly less often in areas where more water would be available to them. For example, while only 20% of nurses were on interfluves, half of Carnegiea protégé were there. One possible explanation is that the subsequent redistribution of seeds by water away from preferred microsites may be important in shaping the final pattern of successful establishment. The shallow-rooted Carnegiea relies entirely on surface water for its moisture; it is thus paradoxical that the surface water so fundamentally essential to its survival throughout its life appears to hinder its establishment in precisely those sites where the greatest surface water would be available, particularly near the water-limited edge of its range.  相似文献   

13.
14.
Chondrosarcoma is the third most common cartilaginous bone tumour that is insusceptible to radio- and chemotherapy and it is inclined to metastasis. These resistant qualities are facilitated by mutant variants of isocitrate dehydrogenases (IDH) 1–2 enzyme. These mutant enzymes promote oncogenesis of chondrocytes by changing their epigenetic wardrobe leading to tumour formation. Presently, there are lack of drugs available to be exploited as a remedy for this disease. On the other hand, majority of chemotherapeutic drugs induce cytotoxicity in the cancer cells at the cost of harming surrounding healthy cells, jeopardizing human life. The current study is focused on screening various medicinal compounds against IDH1 and IDH2 combined with insilico gene expression, cancer cells cytotoxicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) studies to elucidate the molecular mechanism against chondrosarcoma and also to uncover pharmacokinetic profile of these compounds. Screening of 5000+ compounds filtered two efficacious compounds (Artocarpetin and 5-Galloylquinic acid) capable of establishing hydrogen bond connections with both IDH variants. Other studies showed that these compounds downregulate ITGAV, CARPIN1, CCL5 and COG5 and TNFRSF10B gene that reduces chondrogenesis and inflammation, Artocarpetin and 5-galloylquinic acid are TP53 expression enhancer and inhibit MM9 expression that promote immunomodulation and apoptosis in these cancers. These compounds are both active against CHSA8926 and CHSA011 cell line of chondrosarcoma. However, the ADME profile of 5-galloylquinic acid is slightly unsatisfactory based on druglikness and bioavailability score criteria as compared to artocarpetin. Both of these compounds are class-5 chemicals and require high doses to elicit adverse response. Our results suggest that artocarpetin and 5-galloylquinic acid are efficacious drug candidates and could be further exploited to validate these findings in vitro.  相似文献   

15.
The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti–T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti–T. cruzi drug entities in the near future, are reviewed here.  相似文献   

16.
Following the observation that many critically ill patients cannot maintain their gastric juice pH below 4 without treatment a study was performed to measure the gastric juice pH in such patients and relate it to other clinical data. The case notes of 64 patients who had been admitted to the intensive care unit and taken part in two trials of ranitidine treatment were reviewed. During those trials gastric juice was aspirated hourly and the pH and volume measured. In this study the values recorded during a six hour untreated control phase were used. Data on age, diagnosis, treatment, outcome, episodes of hypoxia, episodes of hypotension, and use of inotropic drugs were also reviewed. Full data were available for 61 patients: 27 had a mean baseline pH of >5 during the control phase and 34 a mean baseline pH of <5. Significantly more of those with a high pH suffered hypotension (21/27 v 13/34) and received inotropic drugs (16/27 v 8/34).These findings suggest that hypotension in critically ill patients adversely affects gastric exocrine function; prophylaxis with drugs that can improve gastric mucosal blood flow may be more effective than with antacids.  相似文献   

17.
The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.  相似文献   

18.
Aspergillus fumigatus is an opportunistic human pathogen that causes aspergillosis, a spectrum of environmentally acquired respiratory illnesses. It has a cosmopolitan distribution and exists in the environment as a saprotroph on decaying plant matter. Azoles, which target Cyp51A in the ergosterol synthesis pathway, are the primary class of drugs used to treat aspergillosis. Azoles are also used to combat plant pathogenic fungi. Recently, an increasing number of azole-naive patients have presented with pan-azole–resistant strains of A. fumigatus. The TR34/L98H and TR46/Y121F/T289A alleles in the cyp51A gene are the most common ones conferring pan-azole resistance. There is evidence that these mutations arose in agricultural settings; therefore, numerous studies have been conducted to identify azole resistance in environmental A. fumigatus and to determine where resistance is developing in the environment. Here, we summarize the global occurrence of azole-resistant A. fumigatus in the environment based on available literature. Additionally, we have created an interactive world map showing where resistant isolates have been detected and include information on the specific alleles identified, environmental settings, and azole fungicide use. Azole-resistant A. fumigatus has been found on every continent, except for Antarctica, with the highest number of reports from Europe. Developed environments, specifically hospitals and gardens, were the most common settings where azole-resistant A. fumigatus was detected, followed by soils sampled from agricultural settings. The TR34/L98H resistance allele was the most common in all regions except South America where the TR46/Y121F/T289A allele was the most common. A major consideration in interpreting this survey of the literature is sampling bias; regions and environments that have been extensively sampled are more likely to show greater azole resistance even though resistance could be more prevalent in areas that are under-sampled or not sampled at all. Increased surveillance to pinpoint reservoirs, as well as antifungal stewardship, is needed to preserve this class of antifungals for crop protection and human health.  相似文献   

19.
We determined and compared the efficiency of thermoregulation of Rhinella arenarum in the Monte desert (Argentina) in two seasons, dry and wet. In the field, we measured body temperatures, micro-habitat temperatures and operative temperatures; while in the laboratory; we measured the selected body temperatures. Our results show a change in the thermoregulatory strategy of R. arenarum that is related to environmental constraints on their thermal niche. R. arenarum has the ability to be plastic and combine two strategies: (i) a moderate thermoregulator in the wet season, where thermal resources are available such that body temperature is maintained within the set points and physiologicial and behavioral processes are optimized; and (ii) a thermoconformer in the dry season where the thermal environment is more homogeneous and there is greater time invested in searching for food.  相似文献   

20.
Parasitic roundworm infections plague more than 2 billion people (1/3 of humanity) and cause drastic losses in crops and livestock. New anthelmintic drugs are urgently needed as new drug resistance and environmental concerns arise. A “chokepoint reaction” is defined as a reaction that either consumes a unique substrate or produces a unique product. A chokepoint analysis provides a systematic method of identifying novel potential drug targets. Chokepoint enzymes were identified in the genomes of 10 nematode species, and the intersection and union of all chokepoint enzymes were found. By studying and experimentally testing available compounds known to target proteins orthologous to nematode chokepoint proteins in public databases, this study uncovers features of chokepoints that make them successful drug targets. Chemogenomic screening was performed on drug-like compounds from public drug databases to find existing compounds that target homologs of nematode chokepoints. The compounds were prioritized based on chemical properties frequently found in successful drugs and were experimentally tested using Caenorhabditis elegans. Several drugs that are already known anthelmintic drugs and novel candidate targets were identified. Seven of the compounds were tested in Caenorhabditis elegans and three yielded a detrimental phenotype. One of these three drug-like compounds, Perhexiline, also yielded a deleterious effect in Haemonchus contortus and Onchocerca lienalis, two nematodes with divergent forms of parasitism. Perhexiline, known to affect the fatty acid oxidation pathway in mammals, caused a reduction in oxygen consumption rates in C. elegans and genome-wide gene expression profiles provided an additional confirmation of its mode of action. Computational modeling of Perhexiline and its target provided structural insights regarding its binding mode and specificity. Our lists of prioritized drug targets and drug-like compounds have potential to expedite the discovery of new anthelmintic drugs with broad-spectrum efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号