首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chitosan, a binary heteropolysaccharide consisting of 2-acetamide-2-deoxy-β-D-glucopyranose and 2-amino-2-deoxy-β-D-glucopyranose residues linked in different proportions via β-glycosidic bonds. The presence of a primary amino group in the chitosan structure allows for the synthesis of various derivatives. The procedure of obtaining activated N-hydroxysuccinimide esters with the use of lactobionic acid was applied to obtain galactosylated derivatives of low-molecular-weight chitosan with a substitution degree varying from 8 to 23%. The properties of these derivatives (viscosity, solubility, and biodegradability) were studied. These derivatives are well soluble at pH values greater than the acidity constant of amino groups of chitosan (6.5). Broadening the pH range towards increase and the presence of galactose residues allows these derivatives to be used in working with biological objects.  相似文献   

2.
Novel chitosan derivatives with UV-curable functional groups, such as 3-methoxy-4-(2-hydroxy-3-methacryloyloxypropoxy)benzyl, 3,4-bis(2-hydroxy-3-methacryloyloxypropoxy)benzyl, 3-methoxy-4-methacryloyloxybenzyl, and 3,5-dimethacryloyloxybenzyl groups, were prepared. Introduction of photosensitive functional groups to chitosan was accomplished by reductive N-alkylation via Schiff’s bases using corresponding photosensitive aldehydes. Compared to starting chitosan, UV-curable chitosan derivatives showed better solubility in several organic solvents, such as DMSO and 70% methacrylic acid. The solubility of these compounds increased with an increase in the degree of substitution of the N-alkyl side chains. After UV irradiation for 20 s under a high-pressure mercury lamp at a distance of 15 cm from the samples, acidic methanol solutions of these derivatives were transformed to gels in the presence of photo-initiator, and their dried films adsorbed palladium (II) at pH 1.1 and pH 5.3. The UV-curable chitosan derivatives were successfully used as coating materials for electroless plating on non-conductive substances.  相似文献   

3.
The soluble lipase from Pseudomonas fluorescens (PFL) forms bimolecular aggregates in which the hydrophobic active centers of the enzyme monomers are in close contact. This bimolecular aggregate could be immobilized by multipoint covalent linkages on glyoxyl supports at pH 8.5. The monomer of PFL obtained by incubation of the soluble enzyme in the presence of detergent (0.5% TRITON X-100) could not be immobilized under these conditions. The bimolecular aggregate has two amino terminal residues in the same plane. A further incubation of the immobilized derivative under more alkaline conditions (e.g., pH 10.5) allows a further multipoint attachment of lysine (Lys) residues located in the same plane as the amino terminal residues. Monomeric PFL was immobilized at pH 10.5 in the presence of 0.5% TRITON X-100. The properties of both PFL derivatives were compared. In general, the bimolecular derivatives were more active, more selective and more stable both in water and in organic solvents than the monomolecular ones. The bimolecular derivative showed twice the activity and a much higher selectivity (100 versus 20) for the hydrolysis of R,S-2-hydroxy-4-phenylbutyric acid ethyl ester (HPBEt) in aqueous media at pH 5.0 compared to the monomeric derivative. In experiments measuring thermal inactivation at 75 °C, the bimolecular derivative was 5-fold more stable than the monomeric derivative (and 50-fold more stable than a one-point covalently immobilized PFL derivative), and it had a half-life greater than 4 h. In organic solvents (cyclohexane and tert-amyl alcohol), the bimolecular derivative was much more stable and more active than the monomeric derivative in catalyzing the transesterification of olive oil with benzyl alcohol.  相似文献   

4.
The stability of the solutions of partially N-acetylated chitosans was studied by two methods: (1) 1% solutions of the chitosan derivatives in 0.1 M aqueous acetic acid were added dropwise to buffer solutions with pH from 8.6 to 12 and to a 0.1 M NaOH solution; (2) to each 0.5% solution of the derivatives in 0.1 M acetic acid was added the desired amount of a 1 M NaOH solution. The stability data obtained were summarized with respect to the degree of N-acetylation. It was found that the solutions of the derivatives with more than 50% acetyl content were stable even in alkaline conditions and the gelation and precipitation of the solutions did not occur. The reactivity of the derivatives with the degree of N-acetylation of more than 50% was studied using methyl 4-azidobenzoimidate (MABI) and ethylene glycol diglycidyl ether in homogeneous states. It was found that MABI reacted with amino groups of the chitosans only at neutral pH and glycidyl groups reacted at neutral and alkaline pH. It seems that these unique properties of chitosans with a degree of N-acetylation of more than 50% will enable us to prepare new chitosan derivatives.  相似文献   

5.
Chemical modification of chitosan by introducing quaternary ammonium moieties into the polymer backbone renders excellent antimicrobial activity to the adducts. In the present study, we have synthesized 17 derivatives of chitosan consisting of a variety of N-aryl substituents bearing either electron-donating or electron-withdrawing groups. Selective N-arylation of chitosan was performed via Schiff bases formed by the reaction between the 2-amino groups of the glucosamine residue of chitosan with aromatic aldehydes under acidic conditions, followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Each of the derivatives was further quaternized using N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride (Quat-188) as the quaternizing agent that reacted with either the primary amino or hydroxyl groups of the glucosamine residue of chitosan. The resulting quaternized materials were water soluble at neutral pH. Minimum inhibitory concentration (MIC) antimicrobial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria in order to explore the impact of the extent of N-substitution (ES) on their biological activities. At ES less than 10%, the presence of the hydrophobic substituent, such as benzyl and thiophenylmethyl, yielded derivatives with lower MIC values than chitosan Quat-188. Derivatives with higher ES exhibited reduced antibacterial activity due to low quaternary ammonium moiety content. At the same degree of quaternization, all quaternized N-aryl chitosan derivatives bearing either electron-donating or electron-withdrawing substituents did not contribute antibacterial activity relative to chitosan Quat-188. Neither the functional group nor its orientation impacted the MIC values significantly.  相似文献   

6.
研究低聚壳聚糖(COS)与α-丙氨酸/天冬酰胺的美拉德反应,考察了两个体系(低聚壳聚糖的羰基与氨基的物质量比均为1∶1)的pH、吸光度和荧光值的变化。醇沉法提取低聚壳聚糖衍生物CA和CN。对两种衍生物进行红外表征和分子量测定,并研究其对超氧阳离子O2-.、DPPH自由基的清除能力以及还原能力。结果显示:抗氧化能力强弱次序为CA>CN>COS,即美拉德反应后低聚壳聚糖衍生物抗氧化能力得到显著提高,且CA的抗氧化活性优于CN,表明与小分子氨基酸进行美拉德反应制得的壳聚糖衍生物具有更好的抗氧化性。  相似文献   

7.
Kethoxal (3-ethoxy-2-ketobutanal) reacts with the guanidino group of Nalpha-acetylarginine to produce four derivatives, reactive to periodate, stable at pH 7, with 15% reverting to arginine on acid hydrolysis. Other amino acids with blocked alpha-amino groups do not react, except the epsilon-amino of lysine (slowly). The pK of the mixed Kethoxal-Nalpha-acetylarginine derivatives is 5.8-6.1. Kethoxal reacts at neutral pH with arginyl residues of bovine pancreatic ribonuclease A. In the presence of an active-site ligand, arginine-39 and arginine-85 react at about equal rates. The loss of enzymic activity at pH 7 is proportional to the combined loss of these residues. The enzymic activity toward RNA is 20-25% of that of native RNAase at pH 7, and 90-100% at pH 5. In the absence of an active site ligand, arginine-10 is also modified with the loss of almost all enzymic activity, although arginine-10 is not an active-site residue. Arginine-33 is unreactive. Kethoxal-modified RNAase undergoes cross-linking in solution at pH 7 or in the freeze-dried state, Incubation at pH 9 in the presence of homoarginine results in partial regeneration of arginyl residues and activity at pH 7. Kethoxal modification of arginines-39 and -85 appears to raise the pK of lysine-41 by about 1 unit, as indicated ty the pH dependence of arylation by 2-carboxy-4,6-dinitrochlorobenzene. The claims of Patthy and Smith (J. Biol, Chem. (1975) 250, 565-569), and of Takahashi (J. Biol. Chem. (1968) 243, 6171-6179) that arginine-39 is a more important functional residue than is arginine-85 are questioned.  相似文献   

8.
A novel water-soluble chitosan derivative, glucosyloxyethyl acrylated chitosan was successfully synthesized by Michael addition reaction of chitosan with glucosyloxyethyl acrylate (GEA), and the obtained glyco-chitosan derivative was characterized by FT-IR, (1)H NMR, elemental analysis, XRD, TG, DSC and SEM. The FT-IR and (1)H NMR results showed that GEA residues were grafted onto the amino group of chitosan. The degree of substitution (DS) was calculated by elemental analysis. XRD data revealed that the introduced saccharide moieties decreased the crystalline structure of chitosan. TG and DSC results demonstrated that the glucosyloxyethyl acrylated chitosan was less thermal stable than chitosan. This efficient synthetic method provided an approach of preparing water-soluble glyco-chitosan derivatives. The obtained derivatives would show stronger specific affinity of lectin than chitosan thus would have potential applications in biomaterials.  相似文献   

9.
3-Aminopropyl glycoside of 3,2'-di-O-alpha-L-fucosyl-N-acetyllactosamine (Ley tetrasaccharide) was synthesized. The glycosyl donor, 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-galactopyranosyl bromide, was coupled with glycosyl acceptor, 1,6-anhydro-2-acetamido-2-deoxy-beta-D-glucopyranose or its 3-O-acetyl derivative, to give the corresponding N-acetyllactosamine derivatives in 20 and 71% yields, respectively. The glycosyl donor was synthesized from 1,2-di-O-acetyl-3,4,6-tri-O-benzoyl-D-galactopyranose, which was obtained by the treatment of benzobromogalactose with sodium borohydride to yield 1,2-O-benzylidene derivative and subsequent removal of benzylidene group and acetylation. Acidic methanolysis of the disaccharide derivatives resulted in the selective removal of one or both acetyl groups to give the disaccharide acceptor bearing hydroxy groups at C3 of the glucosamine residue and C2 of the galactose residue. The introduction of fucose residues in these positions by the treatment with tetrabenzylfucopyranosyl bromide resulted in a tetrasaccharide derivative, which was converted into 3,2'-di-O-alphha-L-fucopuranosyl- 1,6-anhydro-N-acetyllactosamine peracetate after substitution of acetyl groups for benzoyl and benzyl groups. Opening of the anhydro ring by acetolysis resulted in peracetate, which was then converted into the corresponding oxazoline derivative in two steps. Glycosylation of the oxazoline derivative with 3-trifluoroacetamidopropan-1-ol and removal of O-acetyl and N-trifluoroacetyl protective groups resulted in a free spacered Ley tetrasaccharide.  相似文献   

10.
Two mucoadhesive thiolated polymers were synthesized by the covalent attachment of homocysteine thiolactone (HT) to chitosan and N,N,N-trimethyl-chitosan (TM-chitosan) at various chitosan:HT ratios. The amount of thiol and disulphide groups immobilized on the chitosan influenced the polymer's mucoadhesion positively and negatively, respectively, with the optimal chitosan:HT (w/w) ratio being found to be 1:0.1. The interaction between mucin and chitosan and its three derivatives was highest for the thiolated chitosan derivatives but was pH dependent. HT-chitosan and TM-HT-chitosan, with the thiol groups of 64.15 and 32.48 μmol/g, respectively, displayed a 3.67- and 6.33-fold stronger mucoadhesive property compared to that of the unmodified chitosan at pH 1.2, but these differences were only ∼1.7-fold at pH 6.4. The swelling properties of TM-HT-chitosan and HT-chitosan were higher than that of chitosan and TM-chitosan, attaining a swelling ratio of up to 240% and 140%, respectively, at pH 1.2 within 2 h.  相似文献   

11.
Heparin, heparan sulphate, and various derivatives thereof have been oxidised with periodate at pH 3.0 and 4° and at pH 7.0 and 37°. Whereas oxidation under the latter conditions destroys all of the nonsulphated uronic acids, treatment with periodate at low pH and temperature causes selective oxidation of uronic acid residues. The reactivity of uronic acid residues depends on the nature of neighbouring 2-amino-2-deoxyglucose residues. d-Glucuronic acid residues are susceptible to oxidation when flanked by N-acetylated amino sugars, but resistant when adjacent residues are either unsubstituted or N-sulphated. L-Iduronic acid residues in their natural environment (2-deoxy-2-sulphoamino-d-glucose) are resistant to oxidation, whereas removal of N-sulphate groups renders a portion of these residues periodate-sensitive. Oxidised uronic acid residues in heparin-related glycans may be cleaved by alkali, producing a series of oligosaccharide fragments. Thus, periodate oxidation-alkaline elimination provides an additional method for the controlled degradation of heparin.  相似文献   

12.
N-(2-Carboxyethyl)chitosans were obtained by reaction of low molecular weight chitosan with a low degree of acetylation and 3-halopropionic acids under mild alkaline media (pH 8-9, NaHCO3) at 60 degrees C. The chemical structure of the derivatives obtained was determined by 1H and 13C NMR spectroscopies. It was found that alkylation of chitosan by 3-halopropionic acids proceeds exclusively at the amino groups. The products obtained are described in terms of their degrees of carboxyethylation and ratio of mono-, di-substitution and free amine content. The protonation constants of amino and carboxylate groups of a series of N-(2-carboxyethyl)chitosans were determined by pH-titration at ionic strength 0.1 M KNO3 and 25 degrees C.  相似文献   

13.
The mechanism of inhibition of the two glucoamylases from a Rhizopus sp. and Aspergillus saitoi by aminoalcohol derivatives was investigated. Hydrolysis of maltose by the glucoamylases was inhibited competitively by aminoalcohols at pH 5.0, and tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol and 2-aminocyclohexanol were relatively good inhibitors of the glucoamylases among the aminoalcohol derivatives tested. One hydroxyl group and an amino group in these inhibitors were indispensable for the inhibitory action, and the addition of other hydroxyl, amino or ethyl groups was enhancing. With an increase in pH from 4.0 to 6.0, the Ki values of the aminoalcohols decreased. This result suggested the participation of a carboxyl group, which was related to the glucoamylase activity and had a pKa of 5.7, in the binding of aminoalcohols. The UV difference spectra induced on binding of the aminoalcohol analogues with the glucoamylases may indicate a change of the environment of tryptophan residues to a slightly higher pH on inhibitor binding. The influence of aminoalcohols on the fluorescence intensity due to tryptophan residues and the CD-spectra of the glucoamylases was less than that of maltitol. Thus, the interaction of aminoalcohols with tryptophan residues in the glucoamylases might be less pronounced than that in the case of substrate analogues. The modes of binding of the aminoalcohols with the two glucoamylases were very similar. Therefore, the phenomenon might be a common feature of glucoamylases in general.  相似文献   

14.
The results of X-ray photoelectron spectroscopy (XPS) analyses indicated that palladium chloride was adsorbed on a plastic surface coated with a chitosan-containing paint (C-Paint), and was completely reduced to Pd(0) after reduction with dimethylamine-borane. To improve the stability and hardening properties of C-Paint, UV-curable chitosan derivatives, such as N-[3-methoxy-4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]methylated chitosan and N-(3-methoxy-4-methacryloyloxyphenyl)methylated chitosan, were synthesized. The derivatives showed better affinity for organic solvents. After UV irradiation for 20s, an acidic solution of these derivatives was transformed to a gel, and the dried films exhibited good palladium(II) adsorption at pH 1.1.  相似文献   

15.
This paper presents the adsorption of humic acid from aqueous solution onto crosslinked chitosan derivative (carboxymethylchitosan), formed by additionless irradiation technique. The surface charge and swelling properties of crosslinked samples were investigated. The adsorption of humic acid onto crosslinked carboxymethylchitosan was carried out by the batch method at room temperature, and it was found to be strongly pH-dependent. Maximum amount of humic acid was adsorbed under acidic conditions at the optimum pH value of 3.5. Adsorption kinetic studies indicated the adsorption process was transport-limited at the same pH. The adsorption isotherm analysis data under various initial humic acid concentrations confirms that experimental data fitted well into the Langmuir equation. X-ray photoelectron spectroscopy (XPS) revealed that the amino groups of carboxymethylated chitosan were protonated, suggesting the formation of organic complex between the protonated amino groups and humic acid. From these preliminary evaluations, it was concluded that crosslinked carboxymethylated chitosan derivatives have a great potential in water treatment for the removal of humic acid and other polarized or electrically charged species.  相似文献   

16.
Enzymatic removal of p-alkylphenols from aqueous solutions was investigated through the two-step approach, the quinone conversion of p-alkylphenols with mushroom tyrosinase (EC 1.14.18.1) and the subsequent adsorption of quinone derivatives enzymatically generated on chitosan beads at pH 7.0 and 45 degrees C as the optimum conditions. This technique is quite effective for removal of various p-alkylphenols from an aqueous solution. The % removal values of 97-100% were obtained for p-n-alkylphenols with carbon chain lengths of 5 to 9. In addition, removal of other p-alkylphenols was enhanced by increasing either the tyrosinase concentration or the amount of added chitosan beads, and their % removal values reached >93 except for 4-tert-pentylphenol. This technique was also applicable to remove 4-n-octylphenol (4NOP) and 4-n-nonylphenol (4NNP) as suspected endocrine disrupting chemicals. The reaction of quinone derivatives enzymatically generated with the chitosan's amino groups was confirmed by the appearance of peaks for UV-visible spectrum measurements of the chitosan films incubated in the p-alkylphenol and tyrosinase mixture solutions. In addition, 4-tert-pentylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide.  相似文献   

17.
The regularities of the reaction of aminopolysaccharide chitosan with glutaraldehyde (GA) have been considered. The equilibrium forms of GA in water have been thoroughly studied by NMR spectroscopy. It has been established that at pH 5.6, the exchange of the protons of O=CHCH2 groups for deuterium occurs, indicating the presence of an anion, a product of the first stage of the aldol reaction; at pH > 7.2, the formation of the products of an aldol reaction and aldol condensation takes place. The kinetics of the reaction between the amino groups of chitosan and GA, the kinetics of gel formation in chitosan solutions in the presence of GA, and the kinetics of changes in the rigidity of gels formed have been studied by UV spectroscopy. IR spectra of cross-linked chitosan have been obtained. It has been shown that chitosan catalyzes the polymerization of GA to form irregular products; in this process, the length of oligomeric chains in modified or cross-linked chitosan and the concentration of conjugated bonds increase with the GA concentration and pH of the reaction medium.  相似文献   

18.
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407+/-15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 A resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (betaalpha)8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182.  相似文献   

19.
We have taken advantage of the intrinsic fluorescence properties of chitosanases to rapidly and quantitatively evaluate the protective effect of chitosan against thermal denaturation of chitosanases. The studies were done using wild type chitosanases N174 produced by Streptomyces sp. N174 and SCO produced by Streptomyces coelicolor A3(2). In addition, two mutants of N174 genetically engineered by single amino acid substitutions (A104L and K164R) and one "consensus" (N174-CONS) chitosanase designed by multiple amino acid substitutions of N174 were analyzed. Chitosan used had a weight average molecular weight (Mw) of 220 kDa and was 85% deacetylated. Results showed a pH and concentration-dependent protective effect of chitosan in all the cases. However, the extent of thermal protection varied depending on chitosanases, suggesting that key amino acid residues contributed to resistance to heat denaturation. The transition temperatures (T(m)) of N174 were 54 degrees C and 69.5 degrees C in the absence and presence (6 g/l) of chitosan, respectively. T(m) were increased by 11.6 degrees C (N174-CONS), 13.8 degrees C (CSN-A104L), 15.6 degrees C (N174-K164R) and 25.2 degrees C (SCO) in the presence of chitosan (6 g/l). The thermal protective effect was attributed to an enzyme-ligand thermostabilization mechanism since it was not mimicked by the presence of anionic (carboxymethyl cellulose, heparin) or cationic (polyethylene imine) polymers, polyhydroxylated (glycerol, sorbitol) compounds or inorganic salts. Furthermore, the data from fluorometry experiments were in agreement with those obtained by analysis of reaction time-courses performed at 61 degrees C in which case CSN-A104L was rapidly inactivated whereas N174, N174-CONS and N174-K164R remained active over a reaction time of 90 min. This study presents evidence that (1) the fluorometric determination of T(m) in the presence of chitosan is a reliable technique for a rapid assessment of the thermal behavior of chitosanases, (2) it is applicable to structure-function studies of mutant chitosanases and, (3) it can be useful to provide an insight into the mechanism by which mutations can influence chitosanase stability.  相似文献   

20.
Superoxide anion scavenging activity of graft chitosan derivatives   总被引:9,自引:0,他引:9  
Two kinds of graft chitosan derivatives (CMCTS-g-MAS and HPCTS-g-MAS) were prepared by the graft copolymerization of maleic acid sodium onto etherified chitosans-carboxymethyl chitosan (CMCTS) and hydroxypropyl chitosan (HPCTS), respectively. Superoxide anion scavenging activity of the derivatives was evaluated in a luminal-enhanced autoxidaton of pyrogallol by chemiluminescence techniques. Compared with chitosan, the graft chitosan derivatives have much improved scavenging ability against superoxide anion. They have similar 50% inhibition concentrations (IC50s) as ascorbic acid and superoxide dismutase (SOD). Graft chitosan derivatives with hydroxypropyl groups have relatively higher superoxide anion scavenging ability owing to the incorporation of hydroxyl groups. The graft chitosan derivatives (HPCTS-g-MAS 1, 2, and 3) with different grafting percentages exhibit IC50s values ranging from 243 to 308 μg/mL, which could be related to the contents of active hydroxyl and amino groups in the polymer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号