首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
14C-Labeled phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) species with two homologous saturated acyl chains and of a saturated acyl chain of various lengths, respectively, were each incorporated into the outer leaflet of the membrane lipid bilayer of intact human erythrocytes, and the transbilayer movement into the inner leaflet during incubation at 37 degrees C of the lipid-loaded erythrocytes was followed. The labeled PC and lysoPC molecules present in the outer leaflet were extracted with egg-yolk PC liposome suspension and BSA solution, respectively, and the amount which moved into the inner leaflet during the incubation was measured by determining the residual amount of the labeled lipid in the membrane. Translocation of lysoPC molecules was also measured by assaying the decrease in the amount of the added labeled lysoPC in the membrane during the incubation on the basis of the previously reported fact that lysoPC molecules are all converted metabolically to PC or glycerylphosphorylcholine plus fatty acid as soon as they are translocated from the outer to the inner leaflet. Every lipid tested showed significant transbilayer movement during the course of the incubation for up to 10 h. With the C8, C10, and C12 species of PC the rate of the transbilayer movement increases with decreasing acyl chain length. The same is true with the C14, C16, and C18-lysoPC species.  相似文献   

2.
Intact human erythrocytes were treated, under non-haemolytic conditions at 37 degrees C, with synthetic phosphatidylcholine which has homologous, saturated acyl chains of 8-18 even-numbered carbon atoms (C8-C18-PC) or with lysophosphatidylcholine which has a saturated acyl chain of 8-18 carbon atoms (C8-C18-lysoPC). The C8-C14-PC and C12-C18-lysoPC species were rapidly incorporated into the erythrocytes and induced a shape change of the crenation (echinocyte formation) type. The site of the incorporation was found to be most probably on the outer leaflet of the membrane lipid bilayer. The extent of the shape change was dependent on the amount of each lipid incorporated. When the same amount of a PC or lysoPC species was incorporated into the membrane, about the same extent of crenation was induced, independent of acyl chain length. However, C16-PC, C18-PC, C8-lysoPC and C10-lysoPC, which were not incorporated into the erythrocytes, did not induce any shape change. It is therefore suggested that the hydrophobic moiety of these amphiphilic lipids may greatly contribute to their transfer from the outer medium into the erythrocyte membrane, but do not influence so much the perturbation of the membrane lipid bilayer which may be responsible for induction of the shape change.  相似文献   

3.
TEMPO-phosphatidylcholine (PC) spin probes which have homologous saturated acyl chains of 10, 12, 14 and 16 carbon atoms, were synthesized as analogues of PC. Transfer of TEMPO-PCs from liposomal membrane to the ghost membrane of human erythrocyte and transverse diffusion of TEMPO-PCs within the membrane of intact erythrocytes were determined by measurement of spontaneous increase and decrease in signal amplitude of an anisotropic triplet spectrum, due to dilution of the label by natural phospholipid of the membrane and reduction of the label by the cytoplasmic content of the erythrocyte, respectively. TEMPO-PC molecules in TEMPO-PC liposomes, except dipalmitoyl TEMPO-PC, were rapidly incorporated into the ghost membrane by incubation at 37 degrees C; the PC having shorter acyl chains was transferred faster. The cytoplasmic content of the erythrocyte rapidly reduced the nitroxide radical of the spin probe. The central peak height of ESR signal was once increased by incorporation of TEMPO-PC into the erythrocyte membrane and then was spontaneously decreased during further incubation at 37 degrees C. This decrease indicates that PC molecules traverse from the outer to the inner layer of the membrane lipid bilayer. The decrease of signal amplitude was faster with PC of shorter acyl chain. These findings suggest that both transfer between membranes and transverse diffusion in the membrane may be favored to the PC species with shorter acyl chains.  相似文献   

4.
The purpose of this work is to analyze the effects of cholesterol modulation on acyl chain ordering in the membrane of human erythrocytes as a function of depth from the surface. Partial cholesterol depletion was achieved by incubation of erythrocytes with liposomes containing saturated phospholipids, or with methyl-beta-cyclodextrin (MbetaCD). Cholesterol enrichment was achieved by incubation with liposomes formed by phospholipids/cholesterol, or with the complex MbetaCD/cholesterol. Acyl chain order was studied with electron paramagnetic resonance spectroscopy (EPR) using spin labels that sense the lipid bilayer at different depths. It is shown that the increase in cholesterol stiffens acyl chains but decreases the interaction among lipid headgroups, while cholesterol depletion causes the opposite behavior. It is likely that the observed cholesterol effects are related to those stabilizing the cholesterol-rich detergent-insoluble membrane domains (rafts), recently shown to exist in erythrocytes.  相似文献   

5.
Phosphatidylcholines (PCs) with platelet-activating factor (PAF)-like biological activities are known to be generated by fragmentation of the sn-2-esterified polyunsaturated fatty acyl group. The reaction is free radical-mediated and triggered by oxidants such as metal ions, oxyhemoglobin, and organic hydroperoxides. In this study, we characterized the PAF-like phospholipids produced on reaction of PC having a linoleate group with lipoxygenase enzymes at low oxygen concentrations. When the oxidized PCs were analyzed by gas chromatography-mass spectrometry, two types of oxidatively fragmented PC were detected. One PC had an sn-2-short chain saturated or unsaturated acyl group (C(8)-C(13)) with an aldehydic terminal; the abundant species were PCs with C(9) and C(13). The other PC had a short chain saturated acyl group (C(6)-C(9)) with a methyl terminal, and the most predominant species was PC with C(8). When the extracts of oxidation products were subjected to catalytic hydrogenation, PCs having saturated acyl groups (C(6)-C(14)) were detected; the most abundant was C(12) species. The less regiospecific formation of PAF-like lipids suggests that they were generated by oxidative fragmentation of PC hydroperoxides formed by non-stereoselective oxygenation of the alkyl radical of esterified linoleate that escaped from the active centers of lipoxygenases. One of the PAF-like PC with an aldehydic terminal was found to be bioactive; it inhibited the production of nitric oxide induced by lipopolysaccharide and interferon-gamma in vascular smooth muscle cells from rat aorta.  相似文献   

6.
To study the consequences of depleting the major membrane phospholipid phosphatidylcholine (PC), exponentially growing cells of a yeast cho2opi3 double deletion mutant were transferred from medium containing choline to choline-free medium. Cell growth did not cease until the PC level had dropped below 2% of total phospholipids after four to five generations. Increasing contents of phosphatidylethanolamine (PE) and phosphatidylinositol made up for the loss of PC. During PC depletion, the remaining PC was subject to acyl chain remodeling with monounsaturated species replacing diunsaturated species, as shown by mass spectrometry. The remodeling of PC did not require turnover by the SPO14-encoded phospholipase D. The changes in the PC species profile were found to reflect an overall shift in the cellular acyl chain composition that exhibited a 40% increase in the ratio of C16 over C18 acyl chains, and a 10% increase in the degree of saturation. The shift was stronger in the phospholipid than in the neutral lipid fraction and strongest in the species profile of PE. The shortening and increased saturation of the PE acyl chains were shown to decrease the nonbilayer propensity of PE. The results point to a regulatory mechanism in yeast that maintains intrinsic membrane curvature in an optimal range.  相似文献   

7.
S Li  Z Q Wang  H N Lin    C Huang 《Biophysical journal》1993,65(4):1415-1428
Phosphatidylcholines or C(X):C(Y)PC, quantitatively the most abundant lipids in animal cell membranes, are structurally composed of two parts: a headgroup and a diglyceride. The diglyceride moiety consists of the glycerol backbone and two acyl chains. It is the wide diversity of the acyl chains, or the large variations in X and Y in C(X):C(Y)PC, that makes the family of phosphatidylcholines an extremely complex mixture of different molecular species. Since most of the physical properties of phospholipids with the same headgroup depend strongly on the structures of the lipid acyl chains, the energy-minimized structure and steric energy of each diglyceride moiety of a series of 14 molecular species of phosphatidylcholines with molecular weights identical to that of dimyristoylphosphatidylcholine without the headgroup are determined in this communication by molecular mechanics (MM) calculations. Results of two types of trans-bilayer dimer for each of the 14 molecular species of phosphatidylcholines are also presented; specifically, the dimeric structures are constructed initially based on the partially interdigitated and mixed interdigitated packing motifs followed subsequently by the energy-minimized refinement with MM calculations. Finally, tetramers with various structures to model the lateral lipid-lipid interactions in a lipid bilayer are considered. Results of laborious MM calculations show that saturated diacyl C(X):C(Y)PC with delta C/CL values greater than 0.41 prefer topologically to assemble into tetramers of the mixed interdigitated motif, and those with delta C/CL values less than 0.41 prefer to assemble into tetramers with a repertoire of the partially interdigitated motif. Here, delta C/CL, a lipid asymmetry parameter, is defined as the normalized acyl chain length difference between the sn-1 and sn-2 acyl chains for a C(X):C(Y)PC molecule; an increase in delta C/CL value is an indication of increasing asymmetry between the two lipid acyl chains. These computational results are in complete accord with the calorimetric data presented previously from this laboratory (H-n. Lin, Z-q. Wang, and C. Huang. 1991. Biochim. Biophys. Acta. 1067:17-28).  相似文献   

8.
In a previous report it was shown that the replacement of native erythrocyte phosphatidylcholine (PC) with different PC species which have defined acyl chain compositions can lead to morphological changes (Kuypers, F.A., W. Berendsen, B. Roelofsen, J. A. F. Op den Kamp, and L.L.M. van Deenen, 1984, J. Cell Biol., 99:2260-2267). It was proposed that differences in molecular shape between the introduced PC species and normal erythrocyte PC caused the membrane to bend outwards or inwards, depending on the shape of the PC exchanged. To support this proposal, two requirements would have to be fulfilled: the exchange reaction would take place only with the outer lipid monolayer of the erythrocyte, and the extent of lipid transbilayer movement would be restricted. If this theory is correct, any treatment causing unilateral changes in lipid molecular shape should lead to predictable morphological changes. Since this hypothesis is a refinement of the coupled bilayer hypothesis, but so far lacks experimental support, we have sought other means to change lipid molecular shape unilaterally. Shape changes of human erythrocytes were induced by the replacement of native PC by various PC species using a phosphatidylcholine-specific transfer protein: by hydrolysis of phospholipids in intact cells using sphingomyelinase C or phospholipase A2, and by the combination of both procedures. The morphological changes were predictable; additive when both treatments were applied, and explicable on the basis of the geometry of the lipid molecules involved. The results strongly support the notion that lipid molecular shape affects erythrocyte morphology.  相似文献   

9.
The fate of palmitoyl-lysophosphatidylcholine (lysoPC) incorporated into the membrane of intact human erythrocytes from a medium was investigated under nonhemolytic conditions at 37 degrees C by means of 14C-labeled tracers. The lysoPC was first incorporated into the outer half of the membrane lipid bilayer and then gradually translocated into the inner half during the incubation. At the same time it was metabolically converted into phosphatidylcholine (PC) and free fatty acid (FFA) plus glycerophosphorylcholine by the actions of acyltransferase and lysophospholipase, respectively. The half times of the conversion were about 14 h, while the value of 0.5 h was obtained when the half time was measured with the hemolysate of the lysoPC-loaded erythrocytes. Chymotrypsin treatment of unsealed ghosts caused a definite decrease in lysophospholipase activity, while similar treatment of resealed ghosts did not. This together with other evidence already reported in the literature suggests that both lysophospholipase and acyltransferase may be located in the inner surface of the membrane. The above findings strongly suggest that the most of the lysoPC loaded to the membrane is gradually translocated from the outer to the inner half of the bilayer and soon converted to either PC or FFA.  相似文献   

10.
Polycrystalline lipid samples of a series of mono- and polyunsaturated, double bond positional isomers of 1-eicosanoyl-d(39)-2-eicosenoyl-sn-glycero-3-phosphocholines [C(20-d(39)):C(20:1 Delta(j))PC, with j = 5, 8, 11, or 13; C(20-d(39)):C(20:2 Delta(11,14))PC; and C(20-d(39)):C(20:3 Delta(11, 14,17))PC] were investigated using vibrational Raman spectroscopy to assess the acyl chain packing order-disorder characteristics and putative bilayer cluster formation of the isotopically differentiated acyl chains. Perdeuteration of specifically the saturated sn-1 acyl chains for these bilayer systems enables each chain's intra- and intermolecular conformational and organizational properties to be evaluated separately. Various saturated chain methylene CD(2) and carbon-carbon (C&bond;C) stretching mode peak height intensity ratios and line width parameters for the polycrystalline samples demonstrate a high degree of sn-1 chain order that is unaffected by either the double bond placement or number of unsaturated bonds within the sn-2 chain. In contrast, the unsaturated sn-2 chain spectral signatures reflect increasing acyl chain conformational disorder as either the cis double bond is generally repositioned toward the chain terminus or the number of double bonds increases from one to three. The lipid bilayer chain packing differences observed between the sn-1 and sn-2 chains of this series of monounsaturated and polyunsaturated 20 carbon chain lipids suggest the existence of laterally distributed microdomains predicated on the formation of highly ordered, saturated sn-1 chain clusters.  相似文献   

11.
Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains.  相似文献   

12.
The rates of exchange of [4-14C]cholesterol between lipid vesicles prepared with different phospholipids and with different sizes have been measured. The first-order rate constants were higher using vesicles prepared from phosphatidylcholines with highly branched or polyunsaturated fatty acyl chains than with saturated diacyl or di-O-alkyl chains. The rate measurements indicate that the affinity of cholesterol for phospholipid does not vary significantly on change of the type of linkage (ether or ester) in phosphatidylcholine (PC) or of the positions of the fatty acyl chains in 1,2-diacyl-PC bearing one saturated and one unsaturated chain; furthermore, egg phosphatidylglycerol and egg phosphatidylethanolamine appear to have comparable affinities for cholesterol. However, the molecular packing in the bilayer and nearest-neighbor interactions involving cholesterol appear tightened more by N-palmitoylsphingomyelin than by dipalmitoyl-PC; on incorporation of 44 mol % of these phospholipids (which have the same fatty acyl chain composition) into either small or large unilamellar vesicles prepared with egg phosphatidylglycerol, the exchange rates were strikingly slower when the donor species contained sphingomyelin compared with PC. The rate of cholesterol exchange was 100% faster with small unilamellar vesicles than with large unilamellar vesicles as donors, suggesting that the looser packing in the highly curved small vesicles facilitates cholesterol desorption. The cholesterol exchange rate did not vary with the size of the acceptor vesicles, which indicates that desorption is the rate-limiting step in the exchange process in the presence of excess acceptors.  相似文献   

13.
The thermotropic properties and acyl chain packing characteristics of multilamellar dispersions of binary mixtures of 1-stearoyl-2-caprylphosphatidylcholine (C(18):C(10)PC), an asymmetric chain species, and dimyristoylphosphatidylcholine (C(14):C(14)PC), a symmetric chain lipid, were monitored by vibrational Raman spectroscopy. In order to examine each component of the binary mixture separately, the acyl chains of the symmetric chain species were perdeuterated. As shown by differential scanning calorimetry, the mismatch in the gel phase bilayer thickness between the two lipid components generates a lateral phase separation resulting in two distinct gel phases, G(I) and G(II), which coexist over much of the composition range. The Raman data demonstrate that the mixed interdigitated phase (three chains per headgroup), analogous to single component phase behavior, is retained when the C(18):C(10)PC component act as a host for the G(I) gel phase. In contrast, the C(18):C(10)PC molecules exhibit partial interdigitation (two chains per headgroup) when they are included as guests within the C(14):C(14)PC host matrix to form the G(II) gel phase. Compared to pure C(14):C(14)PC bilayers at equivalent reduced temperatures, the host G(II) gel phase C(14):C(14)PC molecules exhibit an increased acyl chain order, while for the host G(I) gel phase the C(14):C(14)PC lipid species show increased intrachain disorder.  相似文献   

14.
Nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was employed to determine qualitative differences in the lipid molecular species composition of a comprehensive set of organellar membranes, isolated from a single culture of Saccharomyces cerevisiae cells. Remarkable differences in the acyl chain composition of biosynthetically related phospholipid classes were observed. Acyl chain saturation was lowest in phosphatidylcholine (15.4%) and phosphatidylethanolamine (PE; 16.2%), followed by phosphatidylserine (PS; 29.4%), and highest in phosphatidylinositol (53.1%). The lipid molecular species profiles of the various membranes were generally similar, with a deviation from a calculated average profile of approximately +/- 20%. Nevertheless, clear distinctions between the molecular species profiles of different membranes were observed, suggesting that lipid sorting mechanisms are operating at the level of individual molecular species to maintain the specific lipid composition of a given membrane. Most notably, the plasma membrane is enriched in saturated species of PS and PE. The nature of the sorting mechanism that determines the lipid composition of the plasma membrane was investigated further. The accumulation of monounsaturated species of PS at the expense of diunsaturated species in the plasma membrane of wild-type cells was reversed in elo3Delta mutant cells, which synthesize C24 fatty acid-substituted sphingolipids instead of the normal C26 fatty acid-substituted species. This observation suggests that acyl chain-based sorting and/or remodeling mechanisms are operating to maintain the specific lipid molecular species composition of the yeast plasma membrane.  相似文献   

15.
In this study we have synthesized sphingomyelins (SM) and phosphatidylcholines (PC) with amide-linked or sn-2 linked acyl chains with lengths from 14 to 24 carbons. The purpose was to examine how the chain length and degree of unsaturation affected the interaction of cholesterol with these phospholipids in model membrane systems. Monolayers of saturated SMs and PCs with acyl chain lengths above 14 carbons were condensed and displayed a high collapse pressure ( approximately 70 mN/m). Monolayers of N-14:0-SM and 1(16:0)-2(14:0)-PC had a much lower collapse pressure (58-60 mN/m) and monounsaturated SMs collapsed at approximately 50 mN/m. The relative interaction of cholesterol with these phospholipids was determined at 22 degreesC by measuring the rate of cholesterol desorption from mixed monolayers (50 mol % cholesterol; 20 mN/m) to beta-cyclodextrin in the subphase (1.7 mM). The rate of cholesterol desorption was lower from saturated SM monolayers than from chain-matched PC monolayers. In SM monolayers, the rate of cholesterol desorption was very slow for all N-linked chains, whereas for PC monolayers we could observe higher desorption rates from monolayers of longer PCs. These results show that cholesterol interacts favorably with SMs (low rate of desorption), whereas its interaction (or miscibility) with long chain PCs is weaker. Introduction of a single cis-unsaturation in the N-linked acyl chain of SMs led to faster rates of cholesterol desorption as compared with saturated SMs. The exception was monolayers of N-22:1-SM and N-24:1-SM from which cholesterol desorbed almost as slowly as from the corresponding saturated SM monolayers. The results of this study suggest that cholesterol is most likely capable of interacting with all physiologically relevant (including long-chain) SMs present in the plasma membrane of cells.  相似文献   

16.
Early works have shown that when biomembranes are extracted with the non-ionic detergent Triton X-100 at 4 degrees C, only a subset of the components is solubilized. The aim of this paper was to investigate the solubilization of a cell membrane at different Triton concentrations, and to compare the lipid composition and acyl chain order/mobility of the insoluble material with those of the original membrane. We choose bovine erythrocytes, because they have an uncommon composition, as they have a huge amount of sphingomyelin and phosphatidylcholine is almost absent. We determined the degree of order/mobility of the lipid acyl chains by EPR spectroscopy, using liposoluble spin labels. Incubation of bovine erythrocytes with increasing Triton X-100 concentrations yields decreasing amounts of insoluble material which is enriched in sphingomyelin and depleted in cholesterol. Complete lipid solubilization is achieved at a detergent/lipid ratio of about 60, which is much higher than the values reported for human erythrocytes, but is in line with results obtained in model systems. An insoluble pellet is still obtained at higher Triton concentrations, which seems to consist mainly of protein. A very high correlation is found between lipid chain mobility restrictions and sphingomyelin content in the lipid structures. The human erythrocyte membrane also fits well in this correlation, suggesting a significant role of sphingomyelin in determining acyl chain organization. The analogies and differences between our insoluble material and the detergent-resistant membranes (DRM) are discussed.  相似文献   

17.
D B Fenske  H C Jarrell  Y Guo  S W Hui 《Biochemistry》1990,29(51):11222-11229
The quadrupolar splitting profiles of methylene groups along the acyl chains of perdeuteriated dimyristoylphosphatidylcholine (DMPC-d54) in mixtures with dioleoylphosphatidylethanolamine (DOPE) were studied by 2H NMR. The quadrupolar splittings, obtained for lipid mixtures in the bilayer state, were measured as functions of temperature and PE:PC ratio and were used to obtain the approximate gauche probabilities at a given chain position, pB. Ratios (R) of pB for C13, C12, and C11 relative to that of the plateau region were used to characterize the effect of increasing PE on the gauche content of PC chains. At all temperatures studied (including the bilayer to hexagonal phase transition region), for each ratio R (e.g., RC13/P), the relative gauche content of the DMPC chains was similar over the range of 25-85% PE. DOPE is viewed in simple terms as having a "conical" shape; if this geometry applies to the acyl chain region of the molecule, a greater lateral pressure would be expected toward the center of the bilayer as the PE content is increased, resulting in a decreased gauche content, relative to the plateau, of those methylene groups of PC. The failure to observe the predicted increase in lateral pressure has ramifications for the cone-shape molecular model. The overall "cone shape" of PE is seen to arise from the smaller size of the head-group relative to the acyl chains; however, the acyl chain region itself is not rigidly cone-shaped and is better represented by a flexible "balloon". These results were supported by small-angle X-ray diffraction, which showed a decreasing trend in the area per molecule with increasing PE content.  相似文献   

18.
We determined whether the membrane defect in hereditary pyropoikilocytosis (HPP) is associated with thermally induced changes in the lipid bilayer, the stability of which was probed by the rate of translocation of phosphatidylcholine (PC) over the two leaflets. [14C]PC was incorporated into the outer leaflet of the lipid bilayer of the intact erythrocytes using a PC-specific phospholipid exchange protein. The transbilayer equilibration of this PC was determined by measuring the time-dependent changes in its accessibility to exogenous phospholipase A2. The rate of transbilayer equilibration of PC was increased in HPP cells at 37 degrees C when compared to normal erythrocytes (rate constants, 0.07 +/- 0.02 and 0.03 +/- 0.01 h-1, respectively). A further dramatic increase in PC transbilayer equilibration was noted in HPP cells incubated at 44 degrees C (rate constant, 0.15 +/- 0.02 h-1). A similar marked acceleration in transbilayer movement of PC was also seen in normal erythrocytes when incubated at 46 degrees C (rate constant, 0.13 +/- 0.03 h-1). Despite the enhanced transbilayer mobility of PC in HPP cells when compared to normal erythrocytes, no major alteration in the asymmetric distribution could be observed when probed with phospholipase A2. Since changes in transbilayer mobility of PC and cell morphology occur in HPP cells at lower temperature than in normal red cells, it may be concluded that the enhanced thermal sensitivity of spectrin is the major factor responsible for these changes. Our results therefore support the view that the structural integrity of the skeletal network is essential for stabilization of the lipid bilayer of the red cell membrane.  相似文献   

19.
Phosphatidylcholine (PC) is a very abundant membrane lipid in most eukaryotes including the model organism Saccharomyces cerevisiae. Consequently, the molecular species profile of PC, i.e. the ensemble of PC molecules with acyl chains differing in number of carbon atoms and double bonds, is important in determining the physical properties of eukaryotic membranes, and should be tightly regulated. In this review current insights in the contributions of biosynthesis, turnover, and remodeling by acyl chain exchange to the maintenance of PC homeostasis at the level of the molecular species in yeast are summarized. In addition, the phospholipid class-specific changes in membrane acyl chain composition induced by PC depletion are discussed, which identify PC as key player in a novel regulatory mechanism balancing the proportions of bilayer and non-bilayer lipids in yeast.  相似文献   

20.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号