共查询到20条相似文献,搜索用时 0 毫秒
1.
Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase 总被引:41,自引:0,他引:41
Control of the initiation of meiosis was examined in diploids of yeast homozygous for two temperature-sensitive mutations, cyr1 and CYR3, which are defective in adenylate cyclase and cAMP-dependent protein kinase, respectively. The cyr1 and CYR3 mutations permitted the initiation of meiosis, but resulted in the frequent production of two-spored asci at the restrictive temperature. Unlike the wild-type diploid cells, the cyr1 and CYR3 homozygous diploid cells were capable of initiating meiosis even in nutrient growth media. This unique feature of the cyr1 and CYR3 mutants suggests that these mutations relate to the choice between mitotic and meiotic processes. In diploids homozygous for the bcy1 mutation that results in deficiency of the regulatory subunit of cAMP-dependent protein kinase and production of a high level of the catalytic subunit of this enzyme, no premeiotic DNA replication and commitment to intragenic recombination occurred, and no spores were formed. We conclude that the initiation of meiosis may be dependent upon the repression of cAMP production and the inactivation of cAMP-dependent protein kinase. 相似文献
2.
This review details the biochemical events that follow IgE dimerization by antigen and cross-linking of receptors and are linked with the early rise in cyclic AMP. That the monophasic rise in cyclic AMP at 15 s is essential to the degranulation process is evident by pharmacological manipulation of adenylate cyclase, using specific activators and inhibitors to achieve potentiation and inhibition of immunologic release, respectively. Although only a small percentage of membrane adenylate cyclase is transmembrane linked to IgE-Fc perturbation, its product, cyclic AMP, is elevated during activation and is responsible for the activation of two protein kinase isoenzymes at 30-60 s. This sequence appears to be essential for secretion to occur, as evidenced by dose-related inhibition of both beta-hexosaminidase release and protein kinase activation by adenylate cyclase inhibitors. Competitive activation of cyclic AMP-dependent protein kinase activity by a phosphodiesterase inhibitor leads to inhibition of mediator release by diverting an essential enzyme or recruiting an inhibitory sequence. The precise functional role of the mast cell cyclic AMP-dependent protein kinases has not yet been identified, but there is much evidence in other cell types that protein phosphorylation is an essential accompaniment to cellular regulation. Although other apparently essential biochemical steps are noted, such as uncovering a serine esterase, methylation of membrane phospholipid, and increased Ca2+ influx, only a portion of the activation-secretion response is presented here as a sequence, namely, the IgE-Fc receptor-initiated, transmembrane-coupled activation of adenylate cyclase and the subsequent cytoplasmic cyclic AMP-dependent activation of types I and II protein kinases. 相似文献
3.
Regulation by chronic clonidine of adenylate cyclase and cyclic AMP-dependent protein kinase in the rat locus coeruleus 总被引:1,自引:0,他引:1
Clonidine and morphine are known to produce tolerance and dependence in rat locus coeruleus (LC) neurons after chronic administration based on electrophysiological criteria. Previous studies have shown that morphine tolerance and dependence is associated with increases in levels of adenylate cyclase, pertussis toxin-mediated ADP-ribosylation of G-proteins, and cyclic AMP-dependent protein kinase in this brain region. The present study was aimed at investigating whether clonidine tolerance and dependence is also associated with alterations in these intracellular messengers. It was found that, similar to chronic morphine, chronic (2 weeks) clonidine administration, under conditions that produce electrophysiological evidence of tolerance and dependence in LC neurons, increased levels of adenylate cyclase activity and cyclic AMP-dependent protein kinase activity in this brain region, but not in several other regions studied, which included the frontal cortex, neostriatum, and dorsal raphe. However, the changes induced by chronic clonidine in the LC, at maximal doses and duration of treatment, were only approximately 50% in magnitude of those observed in response to morphine. Unlike chronic morphine, chronic clonidine produced no change in G-protein ADP-ribosylation levels in the LC. Chronic administration of a number of other drugs, namely diazepam, chloral hydrate, and dextromethorphan, which produce electrophysiological actions distinct from those of clonidine and morphine in the LC, failed to alter adenylate cyclase and cyclic AMP-dependent protein kinase in this brain region. The results indicate that increased levels of adenylate cyclase and cyclic AMP-dependent protein kinase represent common adaptations by LC neurons to chronic clonidine and morphine, and raise the possibility that such changes contribute to the development of clonidine and morphine tolerance and dependence in these neurons. 相似文献
4.
5.
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. Recent studies suggest that they are key regulators of many cellular events, including cell proliferation and cancer development. Human class I HDACs possess homology to the yeast RPD3 protein and include HDAC1, HDAC2, HDAC3, and HDAC8. While HDAC1, HDAC2, and HDAC3 have been characterized extensively, almost nothing is known about HDAC8. Here we report that HDAC8 is phosphorylated by cyclic AMP-dependent protein kinase A (PKA) in vitro and in vivo. The PKA phosphoacceptor site of HDAC8 is Ser(39), a nonconserved residue among class I HDACs. Mutation of Ser(39) to Ala enhances the deacetylase activity of HDAC8. In contrast, mutation of Ser(39) to Glu or induction of HDAC8 phosphorylation by forskolin, a potent activator of adenyl cyclase, decreases HDAC8's enzymatic activity. Remarkably, inhibition of HDAC8 activity by hyperphosphorylation leads to hyperacetylation of histones H3 and H4, suggesting that PKA-mediated phosphorylation of HDAC8 plays a central role in the overall acetylation status of histones. 相似文献
6.
Yasuo Totsuka Mehdi S. Ferdows Thor B. Nielsen James B. Field 《Biochimica et Biophysica Acta (BBA)/General Subjects》1983,756(3):319-327
Forskolin (40 μM) stimulated adenylate cyclase activities of bovine thyroid plasma membranes without pthe addition of guanine nucleotides. GDP had little effect on the forskolin-stimulated adenylate cyclase activity while Gpp[NH]p (0.1–1.0 μM) decreased it. In the presence of TSH (10 mU/0.11), Gpp[NH]p no longer caused inhibition. Forskolin did not affect phosphodiesterase activities of thyroid homogenates. Forskolin (10 μM) rapidly increased cAMP levels in bovine thyroid slices both in the absence and presence of a phosphodiesterase inhibitor. The effect of TSH (50 mU/ml) on cAMP levels was additive or greater than additive to that of forskolin. An initial 2-h incubation of slices with forskolin did not decrease their subsequent cAMP responses to either forskolin and/or TSH while similar treatment of slices with TSH induced desensitization of the cAMP response to TSH, but not to forskolin. Forskolin (10 μM) as well as TSH (50 mU/ml) activated cAMP-dependent protein kinase of slices in the absence of a phosphodiesterase inhibitor. Although forskolin activated the adenylate cyclase cAMP system, it did not stimulate iodide organification or glucose oxidation, effects which have been attributed to cAMP. In fact, forskolin inhibited these parameters and 32P incorporation into phospholipids as well as their stimulation by TSH. These results indicate that an increase in cAMP levels and cAMP-dependent protein kinase activity in thyroid slices may not necessarily reproduce the effects of TSH on the thyroid. 相似文献
7.
D P Hajjar 《Archives of biochemistry and biophysics》1986,247(1):49-56
Cultured arterial smooth muscle cells have been found to contain an activatable neutral cholesteryl esterase (EC 3.1.1.13). This enzyme is similar to that previously described in adipose tissue, adrenal cortex, and aortic homogenates. Although both the lysosomal (acid) and cytoplasmic (neutral) cholesteryl esterases were activated two- to threefold by the addition of 100 microM dibutyryl cyclic AMP, only neutral cholesteryl esterase was responsive to 100 microM dibutyryl cyclic AMP, 10 mM MgATP, and 50 micrograms/ml exogenous protein kinase when added together. Protein kinase inhibitor (10 micrograms/ml) reversed the action of cyclic AMP-dependent protein kinase; deactivation of neutral cholesteryl esterase was also shown to occur with 50 micrograms/ml phosphoprotein phosphatase. In addition, 0.2 microM prostacyclin, 50 microM forskolin, and an agonist of the beta-adrenergic receptor, 5 microM isoproterenol, significantly stimulated intracellular cyclic AMP accumulation and activated cholesteryl esterase in arterial smooth muscle cells. The data indicate that neutral cholesteryl esterase in arterial smooth muscle cells can be modulated by a phosphorylation-dephosphorylation system involving the cyclic AMP-dependent protein kinase-phosphoprotein phosphatase. Regulation of cholesteryl esterase by this mechanism may affect lipid accumulation in these arterial cells. 相似文献
8.
To determine the regulatory mechanism for human tyrosine hydroxylase, we examined modulations of the activity of the enzyme from human pheochromocytoma by cyclic AMP-dependent protein kinase, calmodulin-dependent protein kinase II and polyanion. The most remarkable activation was observed when the enzyme was assayed at physiological pH (pH 7) after being subjected to phosphorylation by cyclic AMP-dependent protein kinase. Calmodulin-dependent protein kinase II and polyanion also modulated the enzyme activity. The results suggest that tyrosine hydroxylase may be regulated similarly in both human and rat. 相似文献
9.
Effect of cyclic AMP-dependent protein kinase on insulin receptor tyrosine kinase activity. 总被引:1,自引:1,他引:1 下载免费PDF全文
J F Tanti T Grémeaux N Rochet E Van Obberghen Y Le Marchand-Brustel 《The Biochemical journal》1987,245(1):19-26
To explain the insulin resistance induced by catecholamines, we studied the tyrosine kinase activity of insulin receptors in a state characterized by elevated noradrenaline concentrations in vivo, i.e. cold-acclimation. Insulin receptors were partially purified from brown adipose tissue of 3-week- or 48 h-cold-acclimated mice. Insulin-stimulated receptor autophosphorylation and tyrosine kinase activity of insulin receptors prepared from cold-acclimated mice were decreased. Since the effect of noradrenaline is mediated by cyclic AMP and cyclic AMP-dependent protein kinase, we tested the effect of the purified catalytic subunit of this enzyme on insulin receptors purified by wheat-germ agglutinin chromatography. The catalytic subunit had no effect on basal phosphorylation, but completely inhibited the insulin-stimulated receptor phosphorylation. Similarly, receptor kinase activity towards exogenous substrates such as histone or a tyrosine-containing copolymer was abolished. This inhibitory effect was observed with receptors prepared from brown adipose tissue, isolated hepatocytes and skeletal muscle. The same results were obtained on epidermal-growth-factor receptors. Further, the catalytic subunit exerted a comparable effect on the phosphorylation of highly purified insulin receptors. To explain this inhibition, we were able to rule out the following phenomena: a change in insulin binding, a change in the Km of the enzyme for ATP, activation of a phosphatase activity present in the insulin-receptor preparation, depletion of ATP, and phosphorylation of a serine residue of the receptor. These results suggest that the alteration in the insulin-receptor tyrosine kinase activity induced by cyclic AMP-dependent protein kinase could contribute to the insulin resistance produced by catecholamines. 相似文献
10.
Evidence for phosphorylation of rat brain guanylate cyclase by cyclic AMP-dependent protein kinase 总被引:4,自引:0,他引:4
J Zwiller M O Revel P Basset 《Biochemical and biophysical research communications》1981,101(4):1381-1387
Direct phosphorylation of purified rat brain guanylate cyclase by cyclic AMP-dependent protein kinase is demonstrated. In the presence of [γ-32P]ATP, 32P was incorporated into the protein to the extent of 0.8 to 0.9 mol/mol of guanylate cyclase. The presence of 32P in the guanylate cyclase molecule was demonstrated by gel-filtration and by autoradiography after gel electrophoresis. The phosphorylation was accompanied by an increase in enzyme activity, characterized by an increase of VM. These results suggest that the activity of guanylate cyclase may be regulated in vivo by phosphorylation. 相似文献
11.
12.
Calmodulin regulation of adenylate cyclase activity 总被引:8,自引:0,他引:8
Calmodulin-dependent stimulation of adenylate cyclase was initially thought to be a unique feature of neural tissues. In recent years evidence to the contrary has accumulated, calmodulin-dependent stimulation of adenylate cyclase now being demonstrated in a wide range of structurally unrelated tissues and species. Demonstration of the existence of calmodulin-dependent adenylate cyclase has in nearly all instances required the removal of endogenous calmodulin. It is not yet clear whether calmodulin-dependent and calmodulin-independent forms of the enzyme exist and whether some tissues (such as heart) lack a calmodulin-dependent adenylate cyclase. The presence of calmodulin appears largely responsible for the ability of the adenylate cyclase enzyme to be stimulated by submicromolar concentrations of calcium; it may not be relevant to the inhibition of the enzyme which occurs at higher concentrations of calcium. The physical relationship of calmodulin to the plasma membrane bound enzyme (or to the soluble forms of the enzyme) is not known nor is the mechanism of adenylate cyclase activation by calmodulin clear; current data suggest some involvement with both the N and C units of the enzyme. Finally, it is possible that in vivo calcium contributes to the duration of the hormone stimulated cyclic AMP signal. Thus current in vitro data suggest that optimal hormonal activation of calmodulin-dependent adenylate cyclase occurs at very low intracellular calcium concentrations, comparable to those found in the resting cell; conversely the enzyme is inhibited as intracellular calcium increases, following for example agonist stimulation of the cell. These higher calcium concentrations would then activate calmodulin-dependent phosphodiesterase. Such differential effects of calcium on adenylate cyclase and phosphodiesterase would ultimately restrict the duration of the hormone-induced cyclic AMP signal. 相似文献
13.
M.Marlene Hosey Richard D. Green 《Biochimica et Biophysica Acta (BBA)/General Subjects》1977,500(1):152-161
Embryonic chick (7–9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionicf strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7–9-day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio in newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanined by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase. 相似文献
14.
Crude cardiac membrane vesicles were separated into subfractions of sarcolemma and sarcoplasmic reticulum. The subfractions were used to determine the origin and type of cyclic AMP-dependent protein kinase activity present in myocardial membranes. A cyclic AMP-binding protein of molecular weight 55,000 was covalently labeled with the photoaffinity probe 8-azido adenosine 3',5'-mono[32P]phosphate, and found to copurify with the (Na+ + K+)-ATPase activity of sarcolemma, and away from the (Ca2+ + K+)-ATPase activity of sarcoplasmic reticulum. Endogenous cyclic AMP-dependent protein kinase activity also copurified with sarcolemma. Protein substrates phosphorylated by cyclic AMP-dependent protein kinase activity had apparent molecular weights of 21,000 and 8000 and were present in both sarcolemma and sarcoplasmic reticulum. However, while addition of cyclic AMP alone resulted in phosphorylation of sarcolemma proteins, both cyclic AMP and exogenous, soluble cyclic AMP-dependent kinase were required for phosphorylation of sarcoplasmic reticulum proteins. Addition of the calcium-binding protein, calmodulin, to either sarcolemma or sarcoplasmic reticulum resulted in phosphorylation of the 21,000 and 8000-dalton proteins, as well. The results suggest that cardiac sarcolemma contains an intrinsic type II cyclic AMP-dependent protein kinase activity that is not present in sarcoplasmic reticulum. On the other hand, Ca2+- and calmodulin-dependent protein kinase activity is present in both sarcolemma and sarcoplasmic reticulum. 相似文献
15.
Steroid hormones modulate the ability of cells to respond to hormones that act via cyclic AMP. In adipocytes of adrenalectomized rats, cyclic AMP accumulation and lipolysis in response to adrenaline are attenuated. However, the mechanism(s) of these effects are poorly understood. The effects of altered glucocorticoid status in vivo on the steady-state amounts of components of the hormone-sensitive adenylate cyclase were analysed in rat adipocytes. beta-Adrenergic receptors were analysed by using radioligand binding and immunoblotting with an anti-receptor antiserum. Neither the amount of radioligand binding nor the amount of beta-adrenergic-receptor peptide (Mr 67,000) was altered by adrenalectomy, whereas treatment of adrenalectomized rats with dexamethasone was found to increase both parameters by more than 25% with respect to the control. Forskolin-stimulated adenylated cyclase activity was unchanged in membranes isolated from adipocytes of adrenalectomized rats, but was decreased (50%) in those from dexamethasone-treated rats. The alpha-subunit of Gs was probed by using cholera-toxin-catalysed ADP-ribosylation. Immunoblotting was used to analyse the steady-state amounts of G-protein beta-subunits (beta-G35/36). Adrenalectomy was associated with decreases in the steady-state amounts of alpha-Gs (30%) and beta-G35/36 (50%). Dexamethasone treatment of adrenalectomized animals partially restored the lipolytic response of adipocytes to adrenaline and the amounts of alpha-Gs, increased the amounts of beta-G35/36 subunits from 50% to 150% of control values, increased beta-adrenergic receptors by more than 25% and decreased adenylate cyclase activity (50%). These results suggest that the steady-state amounts of components of hormone-sensitive adenylate cyclase are differentially regulated by glucocorticoids. 相似文献
16.
17.
Embryonic chick (7-9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionic strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7--9 day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio of newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanied by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase. 相似文献
18.
Hormonal regulation of nuclear cyclic AMP-dependent protein kinase subunit levels in rat ovaries 总被引:2,自引:0,他引:2
Biochemical as well as immunochemical studies were carried out to quantitatively and qualitatively evaluate the hormonal regulation of nuclear cAMP-dependent protein kinase subunits in ovaries from estrogen-treated hypophysectomized rats. Photoaffinity labeling of nuclear extracts with 8-azido-[32P]cAMP and electrophoretic analysis showed the existence of three variants of the regulatory subunit RI and of a 52,000-dalton RII variant (RII-52) in ovarian nuclei of estrogen-primed hypophysectomized rats. After follicle-stimulating hormone (FSH) stimulation, an additional variant of RII (RII-51, Mr = 51,000) was detected in nuclei. The cytosolic RII-54 variant (Mr = 54,000) could not be identified in nuclei by photoaffinity labeling. The FSH-mediated appearance of the nuclear RII-51 variant was accompanied by an approximate 2-fold increase of nuclear catalytic subunit activity. Using quantitation by enzyme-linked immunosorbent assay, we identified a marked FSH-mediated increase of nuclear RII variant(s) and confirmed the increase of nuclear catalytic subunit levels. Furthermore, morphometric analysis of nuclear and cytoplasmic antigen density by immunogold electron microscopy demonstrated a cell-specific modulation by FSH of RII and C subunit density. In granulosa cells, both nuclear as well as cytoplasmic RII density was increased by FSH, whereas catalytic subunit density was increased in the nuclear area only. In thecal cells, FSH increased only the nuclear catalytic subunit density. These results provide biochemical as well as immunochemical evidence for a cell-specific FSH regulation of nuclear RII and catalytic subunit levels which may be involved in the molecular events responsible for the FSH-mediated differentiation of the rat ovary. 相似文献
19.
Frederick R. Derubertis Patricia A. Craven 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,585(4):499-511
Studies of the chromatographic distribution of soluble protein kinase in rat kidney demonstrated that the type I isoenzyme predominates in cortex, whereas activity in outer and inner medulla is almost exclusively the type II form. The type II isoenzyme also predominates (95% or greater) in human, canine, bovine, porcine and rabbit inner medulla. Compared to soluble type I activities from rat renal cortex or medulla, type II activity of inner medulla demonstrates a marked resistance to activation by NaCl and/or urea in subcellular preparations. However, with respect to solute activation, the resistance of the type II enzyme of inner medulla does not differ from that of type II activities from other tissues. In contrast to the effects on basal activity, NaCl and urea potentiated inner medullary type II activation by cyclic AMP and also delayed the rate of subunit reassociation after chromatographic removal of cyclic AMP. Incubation of inner medullary slices in high osmolality buffer (NaCl and urea) did not alone activate soluble protein kinase, an observation which implied that the enzyme was also resistant to solute activation in the intact cell system. Moreover, at 1650 mosM, vasopressin activation of soluble protein kinase was enhanced compared to responses at 750 mosM despite comparabel levels of cyclic AMP accumulation at the two osmolalities. However, a cyclic AMP-independent action of high osmolality to reduce the rate of inactivation of arginine vasopressin-stimulated protein kinase was not demonstrable in inner medullary slices.The present data suggest the possibility that the resistance of inner medullary protein kinase to solute activation could be related to the isomeric form of enzyme (type II) present in this tissue. The high concentrations of NaCl and urea routinely found in inner medulla during hydropenia also influenced protein kinase responses to arginine vasopressin, and may do so in part by directly potentiating the action of cyclic AMP on subunit dissociation. 相似文献
20.
Tyrosine kinase activity of insulin receptors from human placenta. Effects of autophosphorylation and cyclic AMP-dependent protein kinase. 下载免费PDF全文
The kinase activity of partially purified insulin receptor obtained from human placenta was studied. When autophosphorylation of the beta-subunit of the receptor was initiated by ATP prior to the addition of the exogenous substrate, both basal and insulin-stimulated kinase activity was increased. However, half-maximum effective insulin concentrations were unchanged. Insulin receptor autophosphorylation as stimulated by ATP and insulin failed to affect significantly 125I-insulin binding to partially purified insulin receptor from human placenta. It is concluded that autophosphorylation of the insulin receptors regulates its kinase activity but not its affinity for insulin. The catalytic subunit of cyclic AMP-dependent protein kinase failed to phosphorylate either subunit of the insulin receptor, and each kinase failed to affect the affinity of the other one. Thus no functional interaction between cyclic AMP-dependent protein kinase and insulin receptors was observed in the in vitro system. 相似文献