首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological characteristics and antibiotic sensitivity of P. stutzeri strain, isolated from a child with pleuropneumonia, are presented. Formation of rugous colonies, growth at 41 degrees C and in the presence of 6.5% of NaCl, the positive results of the oxidase and nitrate reductase tests, the negative signs of arginine hydrolase and lysine decarboxylase activity permit the identification of this Pseudomonas species. The isolated culture has proved to be sensitive to amino glycoside antibiotics, carbonicillin and polymyxin.  相似文献   

2.
Biology of Pseudomonas stutzeri   总被引:2,自引:0,他引:2       下载免费PDF全文
Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri.  相似文献   

3.
Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri.  相似文献   

4.
Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA   总被引:11,自引:0,他引:11  
In a soil/sediment model system we have shown recently that a gram-positive bacterium with natural competence (Bacillus subtilis) can take up transforming DNA adsorbed to sand minerals. Here we examined whether also a naturally transformable soil bacterium of the gramnegative pseudomonad (Pseudomonas stutzeri) can be transformed by mineral-associated DNA. for these studies the transformation protocol of this species was further improved and characterized. The peak of competence during growth of P. stutzeri was determined to occur at the beginning of the stationary phase. The competence state was conserved during shock freezing and thawing of cells in 10% glycerol. Kinetic experiments showed that transformant formation after addition of DNA to competent cells proceeded for more than 2 h with DNA adsorption to cells being the rate limiting step. By means of the defined protocol P. stutzeri was shown to be transformed by sand-adsorbed DNA. Transformation by adsorbed or dissolved DNA occurred between 16° and 44°C. Efficiency and DNaseI-sensitivity of transformation by DNA adsorbed to sand or in liquid were comparable. It is concluded that uptake of particle-bound DNA by P. stutzeri in soil is possible. This finding adds evidence to the view that transformation occurs in natural environments where DNA is assumed to be significantly associated with mineral/particulate material and thereby is protected against enzymatic degradation.  相似文献   

5.
We have identified two types of siderophores produced by Pseudomonas, one of which has never before been found in the genus. Twelve strains of Pseudomonas stutzeri belonging to genomovars 1, 2, 3, 4, 5, and 9 produced proferrioxamines, the hydroxamate-type siderophores. Pseudomonas stutzeri JM 300 (genomovar 7) and DSM 50238 (genomovar 8) and Pseudomonas balearica DSM 6082 produced amonabactins, catecholate-type siderophores. The major proferrioxamines detected were the cyclic proferrioxamines E and D2. Pseudomonas stutzeri KC also produced cyclic (X1 and X2) and linear (G1 and G2a-c) proferrioxamines. Our data indicate that the catecholate-type siderophores belong to amonabactins P 750, P 693, T 789, and T 732. A mutant of P. stutzeri KC (strain CTN1) that no longer produced the secondary siderophore pyridine-2,6-dithiocarboxylic acid continued to produce all other siderophores in its normal spectrum. Siderophore profiles suggest that strain KC (genomovar 9) belongs to the proferrioxamine-producing P. stuzeri. Moreover, a putative ferrioxamine outer membrane receptor gene foxA was identified in strain KC, and colony hybridization showed the presence of homologous receptor genes in all P. stutzeri and P. balearica strains tested.  相似文献   

6.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

7.
Dihydropyrimidinase from Pseudomonas stutzeri ATCC 17588 was purified 100-fold and characterized. It was found that dihydrouracil, dihydrothymine and hydantoin could serve as substrates for the partially purified enzyme. The K m values for dihydrouracil, dihydrothymine and hydantoin were determined to be 19.6 M, 21.3 M and 36.4 M, respectively, while their respective V max values were 0.836 mol/min, 0.666 mol/min and 2.21 mol/min. Between pH 7.5 and 9.0, enzyme activity was shown to be maximal. The optimum temperature for enzyme activity was 45 °C. Using gel filtration, the molecular weight of the enzyme was calculated to be approximately 115000 Da. Metal ions were found to influence the level of enzyme activity. Dihydropyrimidinase activity was stimulated by magnesium ions and inhibited by either zinc or copper ions.  相似文献   

8.
The course of denitrification of nitrate, nitrite and both compounds together by static cultures of Paracoccus denitrificans, Pseudomonas stutzeri and Pseudomonas aeruginosa was studied. These strains represent three different types of denitrification: 1. reduction of nitrate to gaseous nitrogen without accumulation of nitrite (P. denitrificans); 2. partial accumulation of nitrite in growing cultures during reduction of nitrate to gaseous nitrogen (P. aeruginosa) and 3. two-phase denitrification that includes reduction of nitrates at the very beginning of the process, and then, after depletion of the former, the reduction of nitrates to gaseous nitrogen (P. stutzeri). These observations differ from the results reported in the literature and possible reasons are discussed.  相似文献   

9.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

10.
Summary An ISO-NO sensor was used for continuous measurement of nitric oxide release and consumption during denitrification. The sensor was selectively responsive to NO in the presence of other denitrification-associated nitrogen oxides. Evolution of NO signal was coupled with the metabolism of NO2 . The immobilized Pseudomonas stutzeri seems able to to restrict its physiological NO pool to less than 100 nM (about 2 × 10–5 mole/mole of the NO3 or NO2 reduced), a level being one hundredth of the concentration required to inactivate a population in 45 min.  相似文献   

11.
The anaerobic degradation of tetradecylamine and other long-chain alkylamines by a newly isolated denitrifying bacterium was studied. Strain ZN6 was isolated from a mixture of soil and active sludge and was identified as representing Pseudomonas stutzeri, based on partial 16S rRNA gene sequence analysis. Strain ZN6 was a mesophilic, motile, Gram-negative rod-shaped bacterium and was able to grow on a variety of compounds including even-numbered primary fatty amines with alkyl chains ranging from C(4) to C(18) coupled to nitrate reduction. Alkylamines were used as sole carbon, energy and nitrogen source and were completely mineralized. Nitrate was dissimilated by ZN6 to nitrite. When strain ZN6 was grown under nitrate limitation, nitrite was slowly dissimilated further. When cocultivated with the complete denitrifier Castellaniella defragens ZN3, anaerobic degradation under denitrifying of alkylamines by strain ZN6 was slightly faster. Strain ZN3 is a complete denitrifier, unable to convert tetradecylamine, and was copurified from the same enrichment culture as strain ZN6. The proposed pathway for the degradation of alkylamines in strain ZN6 starts with C-N cleavages to alkanals and further oxidation to the corresponding fatty acids.  相似文献   

12.
13.
The siderophore production of the facultative anaerobe Pseudomonas stutzeri, strain CCUG 36651, grown under both aerobic and anaerobic conditions, was investigated by liquid chromatography and mass spectrometry. The bacterial strain has been isolated at a 626-m depth at the Äspö Hard Rock Laboratory, where experiments concerning the geological disposal of nuclear waste are performed. In bacterial culture extracts, the iron in the siderophore complexes was replaced by gallium to facilitate siderophore identification by mass spectrometry. P. stutzeri was shown to produce ferrioxamine E (nocardamine) as the main siderophore together with ferrioxamine G and two cyclic ferrioxamines having molecular masses 14 and 28 atomic mass units lower than that of ferrioxamine E, suggested to be ferrioxamine D2 and ferrioxamine X1, respectively. In contrast, no siderophores were observed from anaerobically grown P. stutzeri. None of the siderophores produced by aerobically grown P. stutzeri were found in anaerobic natural water samples from the Äspö Hard Rock Laboratory.In order to facilitate iron(III) acquisition, plants and microorganisms, such as fungi and bacteria, produce and excrete strong iron(III) chelators, i.e., siderophores (18, 22, 23, 33, 34). While fungal siderophores bind to iron(III) by hydroxamate ligands, bacterial siderophores are more structurally diverse, and common ligands are catecholates, hydroxamates, and carboxylates (21). The iron(III) stability constants for bacterial siderophores vary in the range of 1020 to 1052 (6). In addition to iron(III), other metals can be complexed by siderophores. For the trihydroxamate siderophore desferrioxamine B, sometimes called proferrioxamine B (10), some actinides have been shown to have stability constants in the same range as the ferric stability constant (1030.6), e.g., 1026.6 with thorium(IV) and 1030.8 with plutonium(VI) (32), while the stability constant for uranium(VI) was lower, i.e., 1018 (2).Concerning bacteria, there are several reports on siderophore production by Pseudomonas spp. (1, 3, 4, 19). More than 50 structurally related siderophores, i.e., pyoverdins, produced by the fluorescent Pseudomonas spp., especially Pseudomonas fluorescens and Pseudomonas aeruginosa, have been characterized (3). All pyoverdins emit yellow fluorescent light due to the presence of a 5-amino-2,3-dihydro-8,9-dihydroxy-1-H-pyrimido-quinoline-carboxylic chromophore, to which a peptide chain and a carboxyl chain are attached (1, 3). Nonfluorescent Pseudomonas has also been shown to produce siderophores, such as ferrioxamine E, also called nocardamine (Fig. (Fig.1),1), which was produced by one strain of Pseudomonas stutzeri (19). In addition to ferrioxamines, the P. stutzeri strain KC produced a smaller siderophore, i.e., pyridine-2,6-bis(thiocarboxylic acid) (35). Conversely, a catecholate-type siderophore was shown to be produced by another strain of P. stutzeri, which did not produce any hydroxamate siderophores (4).Open in a separate windowFIG. 1.Structures, molecular masses (mw), and stability constants (Ks) of ferric complexes of the three ferrioxamines: ferrioxamine B (B), ferrioxamine E (E), and ferrioxamine G (G) (5, 18).Most of the studies on bacterial siderophore production have been conducted on microorganisms growing under aerobic conditions. One field-based report, however, indicates the occurrence of putative siderophores in anaerobic environments also (29). In the present study, siderophore production has been studied with both aerobic and anaerobic cultures of P. stutzeri. This species is a facultative aerobe, able to grow with oxygen or nitrate as the electron acceptor, meaning that it can be active under both anaerobic and aerobic conditions. The P. stutzeri strain CCUG 36651, studied here, has been isolated from a depth of 626 m below ground at the Äspö Hard Rock Laboratory (16), where research concerning the geological disposal of nuclear waste is performed. The possibility of mobilizing radionuclides by complexing compounds from bacteria is an important research area in the context of nuclear waste disposal research. It is unknown if such compounds are produced in aquifers under conditions relevant to a disposal site, which would be approximately 500 m underground in granitic rock (27).A study from 2004 shows that P. stutzeri growing aerobically in the presence of uranium-containing shale leached Fe, Mo, V, and Cr from the shale material (17). More recently it was shown that the supernatant of aerobically and anaerobically cultured P. stutzeri was able to increase the partitioning of added Fe, Pm, Am, and Th into the aqueous phase in samples where quartz sand was used as a solid surface (16). Aerobic supernatants maintained 60% or more of the added metals in solution, while anaerobic supernatants were best at maintaining Am in solution, reaching a value of 40% in solution. The increased partitioning to the aqueous phase in the presence of the supernatants was ascribed to the production of organic ligands. Supernatants of both aerobically and anaerobically grown P. stutzeri strain CCUG 36651 yielded a positive response on the universal siderophore assay, the CAS assay (16). This assay is based on ligand competition for iron bound to the colored chrome azurol complex (25, 30).In this study, siderophore production by P. stutzeri strain CCUG 36651 was investigated using mass spectrometry (MS) and liquid chromatography (LC) followed by mass spectrometric detection. Electrospray ionization mass spectrometry (ESI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) are useful tools in characterizing siderophores such as ferrioxamines (10, 13, 14, 28, 31). In order to detect iron(III)-chelating compounds, the ferric iron can be replaced by gallium(III) through ascorbate-mediated reduction of iron(III) (8, 20). In mass spectra, gallium-bound substances are easily recognized due to the characteristic isotope pattern of gallium, where the intensity of the 71Ga signal is about 66% of that of the 69Ga signal. The use of ESI provides so-called soft ionization; thus, information about the molecular weight is obtained. However, by employing MS/MS, fragmentation is achieved, providing more information about the compound structure.In order to verify the chemical difference between the siderophores found by ESI-MS, chromatographic separation was performed. In this case, one reversed-phase C18 column and one column containing a porous graphitic carbon (PGC) stationary phase were used. The separation mechanism of PGC is a combination of hydrophobic interactions, as in C18, and electrostatic interactions between π-electrons. In order to detect substances at low concentrations, column-switched capillary chromatography with MS detection was used. The detection limits of the combined LC-MS/MS system used in this study are in the range of 1 to 5 nM for hydroxamate siderophores of the ferrichrome and ferrioxamine families (9). In order to facilitate analysis of lower concentrations of ferrioxamines, natural water samples were preconcentrated by solid-phase extraction (SPE), resulting in minimum detectable concentrations in the range of 0.02 to 0.1 nM, depending on the initial sample volume.  相似文献   

14.
The siderophore production of the facultative anaerobe Pseudomonas stutzeri, strain CCUG 36651, grown under both aerobic and anaerobic conditions, was investigated by liquid chromatography and mass spectrometry. The bacterial strain has been isolated at a 626-m depth at the Äspö Hard Rock Laboratory, where experiments concerning the geological disposal of nuclear waste are performed. In bacterial culture extracts, the iron in the siderophore complexes was replaced by gallium to facilitate siderophore identification by mass spectrometry. P. stutzeri was shown to produce ferrioxamine E (nocardamine) as the main siderophore together with ferrioxamine G and two cyclic ferrioxamines having molecular masses 14 and 28 atomic mass units lower than that of ferrioxamine E, suggested to be ferrioxamine D2 and ferrioxamine X1, respectively. In contrast, no siderophores were observed from anaerobically grown P. stutzeri. None of the siderophores produced by aerobically grown P. stutzeri were found in anaerobic natural water samples from the Äspö Hard Rock Laboratory.  相似文献   

15.
Resting cells of Pseudomonas stutzeri DEH130 were found to act as biocatalysts to convert 2-hydroxybutyrate (2-HB) into 2-ketobutyrate (2-KA). Two different catalysis mechanisms of 2-KA formation were present in the cells, which were induced by glycolate (GA), and DL-lactate (DL-LA), respectively. The productivity number of 6.52?mmol g?1 cells h?1 was obtained when DL-LA was the sole carbon source and was the highest ever reported.  相似文献   

16.
Bioreduction of Cr(VI) to less toxic Cr(III) by chromate-reducing bacteria has offered an ecological and economical option for chromate detoxification. The present study reports isolation of chromate-resistant bacterial strain Cr8 from chromium slag, identified as Pseudomonas stutzeri, based on 16S rRNA gene sequencing and their potential use in Cr(VI) reduction. The reduced product associated with bacterial cell was characterized by scanning electron microscopy–energy-dispersive x-ray spectroscopy (SEM-EDS) and x-ray diffraction (XRD) analyses. At initial concentrations of 100 and 200 mg L?1 Cr(VI), P. stutzeri Cr8 reduced Cr(VI) completely within 24 h, whereas it reduced almost 1000 mg L?1 Cr(VI) at the end of 120 h. Further, soil column leaching experiments were performed and found that bacterial cells reduced Cr(VI) leachate at faster rate that almost disappeared at the end of 168 h. The leachate precipitates also revealed efficient chromate bioreduction. The remediation process utilizing P. stutzeri could be considered as a viable alternative to reduce Cr(VI) contamination, especially emanating from the overburden dumps of chromite ores and mine drainage.  相似文献   

17.
18.
19.
The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein was purified to apparent homogeneity and analyzed by electronic absorption spectroscopy, nanoflow electrospray ionization time-of-flight mass spectrometry, and electrochemistry. Cyclic voltammograms and UV-vis electronic absorption spectra were indistinguishable from the equivalent data of native P. stutzeri cytochrome c(4). Furthermore, the calculated and experimentally determined molecular masses of recombinant cytochrome c(4) were identical. Biochemical characterization of both wild-type and mutant derivatives of the protein will be greatly enhanced and facilitated by the described high-yield fermentation and rapid isolation procedure.  相似文献   

20.
The stability of immobilized maltotetraose (G(4))-forming amylase (1,4-alpha-D-glucan maltoteraohydrolase, EC 3.2.1.60) from Pseudomonas stutzeri was investigated in both batch and continous processes. The inactivation process of the immobilized enzyme seemed to obey first-order kinetics, and the immobilized enzyme became more stable when coexisting with 20-30 wt % substrate and calcium ions. From intensive studies on the operational stability in the continuous process, the apparent half-life of G(4) productivity in a constant-flow system was mainly affected by the reaction temperature, substrate concentration, and initial immobilized enzyme activity. A new factor, immobilized enzyme stability factor f(s), was proposed to evaluate the half-life of the immobilized enzyme system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号