首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Similar to mammalian excitotoxic cell death, necrotic-like cell death (NCD) in Caenorhabditis elegans can be initiated by hyperactive ion channels. Here we investigate the requirements for genes that execute and regulate programmed cell death (PCD) in necrotic-like neuronal death caused by a toxic MEC-4 channel. Neither the kinetics of necrosis onset nor the total number of necrotic corpses generated is altered by any C. elegans mutation known to block PCD, which provides genetic evidence that the activating mechanisms for NCD and apoptotic cell death are distinct. In contrast, all previously reported ced genes required for phagocytotic removal of apoptotic corpses, as well as ced-12, a new engulfment gene we have identified, are required for efficient elimination of corpses generated by distinct necrosis-inducing stimuli. Our results show that a common set of genes acts to eliminate cell corpses irrespective of the mode of cell death, and provide the first identification of the C. elegans genes that are required for orderly removal of necrotic cells. As phagocytotic mechanisms seem to be conserved from nematodes to humans, our findings indicate that injured necrotic cells in higher organisms might also be eliminated before lysis through a controlled process of corpse removal, a hypothesis that has significant therapeutic implications.  相似文献   

3.
This annual review focuses on invertebrate model organisms, which shed light on new mechanisms in aging and provide excellent systems for both genome-wide and in-depth analysis. This year, protein interaction networks have been used in a new bioinformatic approach to identify novel genes that extend replicative lifespan in yeast. In an extended approach, using a new, human protein interaction network, information from the invertebrates was used to identify new, candidate genes for lifespan extension and their orthologues were validated in the nematode Caenorhabditis elegans . Chemosensation of diffusible substances from bacteria has been shown to limit lifespan in C. elegans , while a systematic study of the different methods used to implement dietary restriction in the worm has shown that they involve mechanisms that are partially distinct and partially overlapping, providing important clarification for addressing whether or not they are conserved in other organisms. A new theoretical model for the evolution of rejuvenating cell division has shown that asymmetrical division for either cell size or for damaged cell constituents results in increased fitness for most realistic levels of cellular protein damage. Work on aging-related disease has both refined our understanding of the mechanisms underlying one route to the development of Parkinson's disease and has revealed that in worms, as in mice, dietary restriction is protective against cellular proteotoxicity. Two systematic studies genetically manipulating the superoxide dismutases of C. elegans support the idea that damage from superoxide plays little or no role in aging in this organism, and have prompted discussion of other kinds of damage and other kinds of mechanisms for producing aging-related decline in function.  相似文献   

4.
The story of cell fusion: big lessons from little worms   总被引:7,自引:0,他引:7  
The ability of two or more cells to unite to form a new syncytial cell has been utilized in metazoans throughout evolution to form many complex organs, such as muscles, bones and placentae. This requires migration, recognition and adhesion between cells together with fusion of their plasma membranes and rearrangement of their cytoplasmic contents. Until recently, understanding of the mechanisms of cell fusion was restricted to fusion between enveloped viruses and their target cells. The identification of new factors that take part in developmental cell fusion in C. elegans opens the way to understanding how cells fuse and what the functions of this process are. In this review, we describe current knowledge on the mechanisms and putative roles of developmental cell fusion in C. elegans and how cell fusion is regulated, together with other intercellular processes to promote organogenesis.  相似文献   

5.
Tube formation is a widespread process during organogenesis. Specific cellular behaviors participate in the invagination of epithelial monolayers that form tubes. However, little is known about the evolutionary mechanisms of cell assembly into tubes during development. In Caenorhabditis elegans, the detailed step-to-step process of vulva formation has been studied in wild type and in several mutants. Here we show that cellular processes during vulva development, which involve toroidal cell formation and stacking of rings, are conserved between C. elegans and Pristionchus pacificus, two species of nematodes that diverged approximately 100 million years ago. These cellular behaviors are divided into phases of cell proliferation, short-range migration, and cell fusion that are temporally distinct in C. elegans but not in P. pacificus. Thus, we identify heterochronic changes in the cellular events of vulva development between these two species. We find that alterations in the division axes of two equivalent vulval cells from Left-Right cleavage in C. elegans to Anterior-Posterior division in P. pacificus can cause the formation of an additional eighth ring. Thus, orthogonal changes in cell division axes with alterations in the number and sequence of cell fusion events result in dramatic differences in vulval shape and in the number of rings in the species studied. Our characterization of vulva formation in P. pacificus compared to C. elegans provides an evolutionary-developmental foundation for molecular genetic analyses of organogenesis in different species within the phylum Nematoda.  相似文献   

6.
Macroautophagy has been implicated in a variety of pathological processes. Hypoxic/ischemic cellular injury is one such process in which autophagy has emerged as an important regulator. In general, autophagy is induced after a hypoxic/ischemic insult; however, whether the induction of autophagy promotes cell death or recovery is controversial and appears to be context dependent. We have developed C. elegans as a genetically tractable model for the study of hypoxic cell injury. Both necrosis and apoptosis are mechanisms of cell death following hypoxia in C. elegans. However, the role of autophagy in hypoxic injury in C. elegans has not been examined. Here, we found that RNAi knockdown of the C. elegans homologs of beclin 1/Atg6 (bec-1) and LC3/Atg8 (lgg-1, lgg-2), and mutation of Atg1 (unc-51) decreased animal survival after a severe hypoxic insult. Acute inhibition of autophagy by the type III phosphatidylinositol 3-kinase inhibitors, 3-methyladenine and Wortmannin, also sensitized animals to hypoxic death. Hypoxia-induced neuronal and myocyte injury as well as necrotic cellular morphology were increased by RNAi knockdown of BEC-1. Hypoxia increased the expression of a marker of autophagosomes in a bec-1-dependent manner. Finally, we found that the hypoxia hypersensitive phenotype of bec-1(RNAi) animals could be blocked by loss-of-function mutations in either the apoptosis or necrosis pathway. These results argue that inhibition of autophagy sensitizes C. elegans and its cells to hypoxic injury and that this sensitization is blocked or circumvented when either of the two major cell-death mechanisms is inhibited.  相似文献   

7.
We have developed a system for killing specific cells in Drosophila using ectopic expression of cell death genes. CED-3 and ICE (caspase-1) are proteins required for programmed cell death in the nematode Caenorhabditis elegans and in mammals, respectively. Our previous study has shown that both ced-3 and Ice can elicit cell death in Drosophila . By expressing ced-3 or Ice in several kinds of cells using a GAL4-UAS system and examining the resulting morphological defects, we show that these abnormalities are thought to be caused by the action of ced-3 or Ice genes. As cells are killed by apoptosis in our system, we could eliminate the possibility of harmful effects on the neighboring cells. Our system provides an alternative and novel cell ablation method to elucidate mechanisms of cell differentiation and cell-cell interactions during development in Drosophila .  相似文献   

8.
秀丽隐杆线虫因其结构简单、易于培养、生命周期短等特点作为一种模式生物已广泛应用于神经系统、衰老机制及细胞程序性死亡的研究。与高等生物不同,秀丽隐杆线虫缺少适应性免疫途径,只有先天免疫途径在抗病原菌、抗氧化应激等方面发挥重要的作用。其体内的胰岛素/胰岛素样生长因子(insulin/ IGF-1)、转化生长因子β(transforming growth factor β,TGF-β)、丝裂原激活的蛋白激酶(mitogen activated protein kinases,MAPK)和细胞程序性死亡(programmed cell death,PCD)4条免疫相关信号转导途径在不同的环境发挥着主要作用。同时,秀丽隐杆线虫的先天免疫系统在进化中有许多保守之处,这为高等生物的免疫机制研究提供了新思路。据此,就有关秀丽隐杆线虫先天免疫信号转导途径的研究进展进行了简述,期望能为人类等高等生物相关联的免疫作用研究提供借鉴和参考。  相似文献   

9.
Woo DK  Shadel GS 《Cell》2011,144(1):11-12
In this issue, Durieux et?al. (2011) describe a tissue-specific signal, originating from mitochondria, that acts cell non-autonomously to regulate life span in the nematode, C.?elegans. This new finding provides a first step toward resolving the relative contributions of mitochondrial free radical damage and signaling mechanisms in aging.  相似文献   

10.
The nematode Caenorhabditis elegans provides numerous experimental advantages for developing an integrative molecular understanding of physiological processes and has proven to be a valuable model for characterizing Ca(2+) signaling mechanisms. This review will focus on the role of Ca(2+) release activated Ca(2+) (CRAC) channel activity in function of the worm gonad and intestine. Inositol 1,4,5-trisphosphate (IP(3))-dependent oscillatory Ca(2+) signaling regulates contractile activity of the gonad and rhythmic posterior body wall muscle contraction (pBoc) required for ovulation and defecation, respectively. The C. elegans genome contains a single homolog of both STIM1 and Orai1, proteins required for CRAC channel function in mammalian and Drosophila cells. C. elegans STIM-1 and ORAI-1 are coexpressed in the worm gonad and intestine and give rise to robust CRAC channel activity when coexpressed in HEK293 cells. STIM-1 or ORAI-1 knockdown causes complete sterility demonstrating that the genes are essential components of gonad Ca(2+) signaling. Knockdown of either protein dramatically inhibits intestinal cell CRAC channel activity, but surprisingly has no effect on pBoc, intestinal Ca(2+) oscillations or intestinal ER Ca(2+) store homeostasis. CRAC channels thus do not play obligate roles in all IP(3)-dependent signaling processes in C. elegans. Instead, we suggest that CRAC channels carry out highly specialized and cell specific signaling roles and that they may function as a failsafe mechanism to prevent Ca(2+) store depletion under pathophysiological and stress conditions.  相似文献   

11.
The cell division and differentiation events that occur during the development of the nematode Caenorhabditis elegans are nearly identical between different individuals, a feature that distinguishes this organism from larger and more complex metazoans, such as humans and Drosophila. In view of this discrepancy, it might be expected that the regulation of cell growth, division and differentiation in C. elegans would involve mechanisms separate from those utilized in larger animals. However, the results of recent genetic, molecular and cellular studies indicate that C. elegans employs an arsenal of developmental regulatory mechanisms quite similar to those wielded by its arthropod and vertebrate relatives. Thus, the nematode system is providing both novel and complementary insights into the general problem of how growth and patterning events are integrated in development. This review offers a general perspective on the regulation of cell division and growth in C. elegans, emphasizing recent studies of these crucial aspects of development.  相似文献   

12.
The development of many animal organs involves a mesenchymal to epithelial transition, in which cells develop and coordinate polarity through largely unknown mechanisms. The C. elegans pharynx, which is an epithelial tube in which cells polarize around a central lumen, provides a simple system with which to understand the coordination of epithelial polarity. We show that cell fate regulators cause pharyngeal precursor cells to group into a bilaterally symmetric, rectangular array of cells called the double plate. The double plate cells polarize with apical localization of the PAR-3 protein complex, then undergo apical constriction to form a cylindrical cyst. We show that laminin, but not other basement membrane components, orients the polarity of the double plate cells. Our results provide in vivo evidence that laminin has an early role in cell polarity that can be distinguished from its later role in basement membrane integrity.  相似文献   

13.
Yuan J 《Molecular cell》2006,23(1):1-12
The developmental cell death in the nematode C. elegans is controlled by a simple and dedicated genetic program. This genetic program is evolutionarily conserved in higher organisms, including mammals. However, although mammalian homologs of C. elegans cell death gene products continue to regulate apoptosis, they are no longer dedicated regulators of cell death. On the other hand, multiple cellular noncell death-related mechanisms have been recruited to regulate cell death under different conditions. Such evidence suggests that evolution has led to an extensive integration of mammalian apoptosis machinery with multiple cellular physiological processes.  相似文献   

14.
It has recently become evident that basic mechanisms for the establishment of cell polarity are conserved between epithelial and nonepithelial systems. The vast catalogue of known gene products involved in various aspects of invertebrate and yeast cell polarity provides a repertoire of candidate proteins that can be tested for their roles in the organization of mammalian epithelia. Here, we describe cell biological approaches to study the development and maintenance of cell polarity in Mardin-Darby canine kidney (MDCK) cells, an established mammalian model cell line for simple epithelia. The assays allowed us to characterize the Caenorhabditis elegans PAR-1 homologue EMK1 as a novel regulator of apical surface formation in epithelial cells.  相似文献   

15.
The Caenorhabditis elegans embryo undergoes a series of stereotyped cell cleavages that generates the organs and tissues necessary for an animal to survive. Here we review two models of embryonic patterning, one that is lineage-based, and one that focuses on domains of organ and tissue precursors. Our evolving view of C. elegans embryogenesis suggests that this animal develops by mechanisms that are qualitatively similar to those used by other animals.  相似文献   

16.
Genetic studies of the nematode Caenorhabditis elegans have uncovered four genes, egl-1 (BH3 only), ced-9 (Bcl-2 related), ced-4 (apoptosis protease activating factor-1), and ced-3 (caspase), which function in a linear pathway to promote developmental cell death in this organism. While this core pathway functions in many cells, recent studies suggest that additional regulators, acting on or in lieu of these core genes, can promote or inhibit the onset of cell death. Here, we discuss the evidence for these noncanonical mechanisms of C. elegans cell death control. We consider novel modes for regulating the core apoptosis genes, and describe a newly identified cell death pathway independent of all known C. elegans cell death genes. The existence of these noncanonical cell death programs suggests that organisms have evolved multiple ways to ensure appropriate cellular demise during development.  相似文献   

17.
Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cell lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.  相似文献   

18.
19.
Programmed cell death, or apoptosis, is a genetically controlled process of cell suicide that is a common fate during an animal's life. In metazoans, apoptotic cells are rapidly removed from the body through the process of phagocytosis. Genetic analyses probing the mechanisms controlling the engulfment of apoptotic cells were pioneered in the nematode Caenorhabditis elegans. So far, at least seven genes have been identified that are required for the recognition and engulfment of apoptotic cells and have been shown to function in two partially redundant signaling pathways. Molecular characterization of their gene products has lead to the finding that similar genes act to control the same processes in other organisms, including mammals. In this paper, we review these exciting findings in C. elegans and discuss their implications in understanding the clearance of apoptotic cells in mammals.  相似文献   

20.
The genome of the nematode Caenorhabditis elegans encodes six putative chloride channels (CeCLC-1 through CeCLC-6) that represent all three known branches of the mammalian CLC gene family. Using promoter fragments to drive the expression of the green fluorescent protein, CeCLC-2, -3, and -4 expression was studied in transgenic C. elegans. CeCLC-4 was specifically expressed in the large H-shaped excretory cell, where it was co-expressed with CeCLC-3, which is also expressed in other cells, including neurons, muscles, and epithelial cells. Also, CeCLC-2 was expressed in several cells of the nervous system, intestinal cells, and vulval muscle cells. Similar to mammalian CLC proteins, only two nematode CLC channels elicited detectable plasma membrane currents in Xenopus oocytes. CeCLC-3 currents were inwardly rectifying and were activated by positive prepulses. Its complex gating behavior can be explained by two gates, at least one of which depends on extracellular anions. In this respect it resembles some mammalian chloride channels with which it also shares a preference of chloride over iodide. C. elegans thus provides new opportunities to understand common mechanisms underlying structure and function in CLC channels and will allow for a genetic dissection of chloride channels in this simple model organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号