首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Refolding human serum albumin at relatively high protein concentration   总被引:1,自引:0,他引:1  
The conditions for refolding reduced and denatured human serum albumin (HSA) were investigated with a view to maximising the yield of native monomeric albumin. Refolding by dialysis was found to be preferable to dilution as a means of chaotrope (urea) and reductant (2-mercaptoethanol) removal. Dialysis of denatured HSA solutions containing 4-8 M urea and 14 mM 2-mercaptoethanol at pH 10.0 was found to be optimal for HSA refolding. The yield of monomeric HSA was maximal (94%) for dialysis in the presence of EDTA (1 mM) and sodium palmitate (20 microM). Using this protocol it was possible to refold HSA at concentrations in excess of 5 mg.ml-1 whilst maintaining a high recovery of native monomer. These results represent a considerable improvement on established methods of HSA refolding.  相似文献   

2.
The changes in the far-UV CD signal, intrinsic tryptophan fluorescence and bilirubin absorbance showed that the guanidine hydrochloride (GdnHCl)-induced unfolding of a multidomain protein, human serum albumin (HSA), followed a two-state process. However, using environment sensitive Nile red fluorescence, the unfolding and folding pathways of HSA were found to follow a three-state process and an intermediate was detected in the range 0.25-1.5 m GdnHCl. The intermediate state displayed 45% higher fluorescence intensity than that of the native state. The increase in the Nile red fluorescence was found to be due to an increase in the quantum yield of the HSA-bound Nile red. Low concentrations of GdnHCl neither altered the binding affinity of Nile red to HSA nor induced the aggregation of HSA. In addition, the secondary structure of HSA was not perturbed during the first unfolding transition (<1.5 m GdnHCl); however, the secondary structure was completely lost during the second transition. The data together showed that the half maximal loss of the tertiary structure occurred at a lower GdnHCl concentration than the loss of the secondary structure. Further kinetic studies of the refolding process of HSA using multiple spectroscopic techniques showed that the folding occurred in two phases, a burst phase followed by a slow phase. An intermediate with native-like secondary structure but only a partial tertiary structure was found to form in the burst phase of refolding. Then, the intermediate slowly folded into the native state. An analysis of the refolding data suggested that the folding of HSA could be best explained by the framework model.  相似文献   

3.
The kinetics of refolding of completely reduced human serum albumin has been studied by various methods including immunological techniques. The decrease in thiol content is very rapid in the beginning of the reoxidation process and rather slow in the later stages. Polyacrylamide gel electrophoresis studies show that, in the earlier stages of refolding, the main part of the albumin is present as various oligomers and that a slow conversion to monomer occurs as reoxidation proceeds. Rocket immunoelectrophoresis shows that the completely reduced protein is devoid of native albumin antigenic determinants but that a rapid regain of immunoprecipitability is obtained upon reoxidation. A new 'consumption' rocket immunoelectrophoretic method has been used to estimate the total regain of antigenicity. The data obtained indicate that there is a preferential rapid folding to native structure in certain parts of the molecule but that areas with wrong or incomplete foldings exist a considerable time after the inital refolding period.  相似文献   

4.
Rasheed Z  Ali R 《Life sciences》2006,79(24):2320-2328
The role of hydroxyl radical (.OH) damaged human serum albumin (HSA) in type 1 diabetes has been investigated in the present study. Hydroxyl radical induced modification on HSA has been studied by UV absorption spectroscopy, ANS fluorescence and carbonyl estimation. Hydroxyl radical modified HSA was found to be highly immunogenic in rabbits as compared to native HSA. The binding characteristics of circulating autoantibodies in type 1 diabetes patients against native and modified HSA were assessed. Diabetes patients (n=31) were examined by direct binding ELISA and the results were compared with healthy age-matched controls (n=22). High degree of specific binding by 54.8% of patients sera towards .OH modified HSA, in comparison to its native analogue (p<0.05) was observed. Sera from those type 1 diabetes patients having smoking history, high aging with high degree of disease showed substantially stronger binding to .OH modified HSA over native HSA in particular. Normal human sera showed negligible binding with either antigen. Competitive inhibition ELISA reiterates the direct binding results. Gel retardation assay further substantiated the enhanced recognition of modified HSA by circulating autoantibodies in diabetes patients. The increase in total serum protein carbonyl levels in the diabetes patients was largely due to an increase in oxidized albumin. HSA of diabetes mellitus patients (DM-HSA) and normal subjects (normal-HSA) were purified on a Sephacryl S-200 HR column. Spectroscopic analysis confirmed that the DM-HSA samples contained higher levels of carbonyls than normal-HSA (p<0.001). DM-HSA was conformationally altered, with more exposure of its hydrophobic regions. Collectively, the oxidation of plasma proteins, especially HSA, might enhance oxidative stress in type 1 diabetes mellitus patients.  相似文献   

5.
Antiperoxidase antibodies enhance refolding of horseradish peroxidase   总被引:1,自引:0,他引:1  
The effect of monoclonal antibodies on protein folding was studied using horseradish peroxidase refolding from guanidine hydrochloride as a model process. Among the five antiperoxidase clones tested, one was found to increase the yield of catalytically active peroxidase after guanidine treatment. The same clone also increased the activity of the native peroxidase by a factor of 2-2.5. While peroxidase refolding under standard conditions resulted in the recovery of only 7-8% of the initial catalytic activity, antibody-assisted refolding increased the yield to 50-100% (or 20-40% from the activity of native enzyme with antibodies). Kinetics of autorefolding and antibody-assisted refolding differed significantly. In the course of autorefolding the catalytic activity was recovered within the first 2.5 min and did not change further within a 2.5- to 60-min interval, whereas in the course of antibody-assisted refolding maximal catalytic activity was attained only in 60 min. The yield of active peroxidase for the antibody-assisted refolding depended linearly on the antibody concentration. The observed effect was strongly specific. Other antiperoxidase clones tested as well as nonspecific antithyroglobulin antibody affected neither kinetics, no the yield of peroxidase refolding.  相似文献   

6.
Human serum albumin (HSA) is the most abundant protein in plasma. It is known to transport drugs as well as endogenous ligands, like free fatty acids (FFA). A mass spectrometry based method was applied to analyze the albumin bound lipid ligands. HSA was isolated from a human plasma pool by cold ethanol fractionation and ion exchange chromatography. HSA was defatted using a solvent extraction method to release the copurified lipids bound to the protein. The extracts were then analyzed by matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS). Using this method, phospholipids and acylglycerols were detected. The phospholipids were identified to be lyso-phosphatidylcholine (lyso-PC) with distribution of different fatty acids (palmitic, stearic, oleic, and linoleic acids). An abundant species in the HSA lipid extract was found to be a diacylglycerol, composed of two linoleic and/or oleic acid chains. The identified motifs reflect structures that are known to be present in plasma. The binding of lysophospholipids has already been described but it is the first ever-reported evidence of native diacylglycerol ligands bound to HSA. Besides the native ligands from plasma a triacylglycerol was detected that has been added during the albumin preparation steps.  相似文献   

7.
Bikunin is a glycosylated protein that aggregates extensively during mammalian cell culture, resulting in loss of activity, loss of native secondary structure, and the formation of nonnative disulfide bonds. We investigated the use of high hydrostatic pressure (1000-3000 bar) for the refolding of bikunin aggregates. The refolding yield obtained with pressure-modulated refolding at 2000 bar was 70 (+/-5%) by reverse-phase chromatography (RP-HPLC), significantly higher than the value of 55 (+/-6%) (RP-HPLC) obtained with traditional guanidine HCl "dilution-refolding." In addition, we determined the thermodynamics of pressure-modulated refolding. The change in volume for the transition of aggregate to monomer DeltaV(refolding) was calculated to be -28 (+/-5) mL/mole. Refolding was accompanied by a loss of hydrophobic exposure, resulting in a positive contribution to the DeltaV(refolding). These findings suggest that the disruption of electro-static interactions or the differences in size of solvent-free cavities between the aggregate and the monomer are the prevailing contributions to the negative DeltaV(refolding).  相似文献   

8.
Oh BJ  Seo MH  Kim HS 《Biomarkers》2012,17(5):394-401
The aim of this study was to evaluate whether the N-terminus of human serum albumin (HSA) has a role in the cobalt binding detected using albumin cobalt-binding (ACB) assay. We compared the results obtained using an enzyme-linked immunosorbent assay (ELISA) for N-terminal-modified HSA with those of a conventional ACB assay in two groups: acute coronary syndrome (n?=?43) and non-ischemic chest pain (n = 39). ACB and cardiac troponin-I levels were higher in the acute coronary syndrome group. No significant correlation between ACB assay and ELISA results was observed in either of the two patient groups. In acute chest pain patients, the N-terminal site of HSA has a negligible or limited role in cobalt binding in the ACB assay.  相似文献   

9.
Heat-stable pullulanase from Bacillus acidopullulyticus was characterized with respect to its stability against thermal and chemical denaturation and its reactivation after complete chemical unfolding. The enzyme was quite thermostable and retained 55% of activity after heating at 60°C for 30 min at pH 5.5. At pH 6.0, only 9% residual activity was observed. The addition of sucrose, polyols, and Na2SO4 strongly stabilized the enzyme against thermal inactivation. The processes of chemical unfolding by guanidinium chloride (GdmCl) and refolding were studied by enzymological and spectroscopic criteria. B. acidopullulyticus pullulanase was very sensitive to GdmCl denaturation and had a transition midpoint at 1.2 M GdmCl. Reactivation after complete unfolding in 5 M GdmCl was initiated by dilution of the unfolding mixture; 67% reactivation was observed under standard conditions. The influence of some chemical and physical parameters (pH, chemical agents, temperature, and unfolding and refolding time) on refolding was investigated. Of the additives tested to assist reactivation, only bovine serum albumin (BSA) increased the yield of activity to 80%. The full regain of structure and activity was proven by comparing the enzymological, physicochemical, and spectroscopic properties of the native and refolded pullulanase. Received: June 22, 1998 / Accepted: December 11, 1998  相似文献   

10.
Contact with hydrophobic silicones frequently leads to protein denaturation. However, it is demonstrated that albumin in water-in-silicone oil emulsions retains its native structure in the presence of a functional, triethoxysilyl-terminated silicone polymer, TES-PDMS. Both HSA and TES-PDMS were essential for the formation of stable water-in-silicone oil emulsions: attempts to generate stable emulsions using independently either the protein or the functionalized silicone as a surfactant failed. Confocal microscopy indicated that the human serum albumin (HSA) preferentially adsorbed at the oil/water interface, even in the presence of another protein (glucose oxidase). A variety of experiments demonstrated that the hydrolysis of the Si-OEt groups on the functional silicone occurred only to a limited extent, consistent with the absence of a covalent linkage between the silicone and protein, or of cross-linked silicones at the interface. The fluorescence spectra of HSA extracted from the emulsions, front-faced fluorescence experiments on the HSA/silicone emulsion itself, and HSA/salicylate binding studies all demonstrated that the stability of the water/oil interface decreased as the protein began to unfold: unfolding of the protein in the emulsion was slower than in aqueous solution. The experimental evidence indicated that the interaction between HSA and TES-PDMS is not associated with either homomolecular (HSA/HSA; TES-PDMS/TES-PDMS) interactions or with covalent linkage between two the polymers. Rather, the data is consistent with the direct binding of unhydrolyzed Si(OEt) 3 groups to native HSA. The nature of these interactions is discussed.  相似文献   

11.
This paper presents a microchip-based system for collecting kinetic time-based information on protein refolding and unfolding. Dynamic protein conformational change pathways were studied in microchannel flow using a microfluidic device. We present a protein-conserving approach for quantifying refolding by dynamically varying the concentration of the chemical denaturants, guanidine hydrochloride and urea. Short diffusion distances in the microchannel result in rapid equilibrium between protein and titrating solutions. Dilutions on the chip were tightly regulated using pressure controls rather than syringe-based flow, as verified with extensive on-chip tracer dye controls. To validate this protein assay method, folding transition experiments were performed using two well-characterized proteins, human serum albumin (HSA) and bovine carbonic anhydrase (BCA). Transition events were monitored through fluorescence intensity shifts of the protein dye 8-anilino-1-naphthalenesulfonic acid (ANS) during dilutions of protein from urea or guanidine hydrochloride solutions. The enzymatic activity of refolded BCA was measured by UV absorption through the conversion of p-nitrophenyl acetate (p-NPA). The microchip protein refolding transitions using ANS were well-correlated with conventional plate-based experiments. The microfluidic platform enables refolding studies to identify rapidly the optimal folding strategy for a protein using small quantities of material.  相似文献   

12.
Roy I  Gupta MN 《Protein engineering》2003,16(12):1153-1157
A pH-responsive polymer Eudragit S-100 has been found to assist in correct folding of alpha-chymotrypsin denatured with 8 M urea and 100 mM dithiothreitol at pH 8.2. The complete activity could be regained within 10 min during refolding. Both native and refolded enzymes showed emission of intrinsic fluorescence with lambda(max) of 342 nm. Gel electrophoresis showed that the presence of Eudragit S-100 led to dissociation of multimers followed by the appearance of a band at the monomer position. The unfolding (by 8 M urea) and folding (assisted by the polymer) also led to complete renaturation of alpha-chymotrypsin initially denatured by 90% dioxane. The implications of the data in recovery of enzyme activity from inclusion bodies and the interesting possibility in the in vivo context of reversing protein aggregation in amyloid-based diseases have been discussed.  相似文献   

13.
The full-length cDNA of MTH1in Schistosoma japonicum was previously isolated. However, insoluble protein expression in Escherichia coli is the biggest bottleneck limiting biological and biophysical studies. Protein aggregation could not be significantly prevented using solubilization or refolding techniques, and denatured MTH1 protein could not be refolded to the native monomer form. Hence, integrating several refolding techniques within the protein refolding process of MTH1, a large amount of active MTH1 was obtained for protein crystallization. We primarily utilized the two-step-denaturing and refolding method and the protein refolding screening technique, as well as the continuous dialysis method. First, we identified the refolding buffer composition that allowed for successful refolding to overcome protein precipitation. Next, we used the two-step-denaturing and refolding method and the continuous dialysis method to suppress protein aggregation. In the end, we obtained 15 mg of active MTH1 monomer with 95% purity from 0.5l medium. Integrated refolding techniques proved to be excellent for obtaining the native monomer of S. japonicum MTH1 from inclusion bodies, paving the way for future biological and biophysical studies.  相似文献   

14.
ClpB is a heat-shock protein from Escherichia coli with an unknown function. We studied a possible molecular chaperone activity of ClpB in vitro. Firefly luciferase was denatured in urea and then diluted into the refolding buffer (in the presence of 5 mM ATP and 0.1 mg/ml bovine serum albumin). Spontaneous reactivation of luciferase was very weak (less than 0.02% of the native activity) because of extensive aggregation. Conventional chaperone systems (GroEL/GroES and DnaK/DnaJ/GrpE) or ClpB alone did not reactivate luciferase under those conditions. However, ClpB together with DnaK/DnaJ/GrpE greatly enhanced the luciferase activity regain (up to 57% of native activity) by suppressing luciferase aggregation. This coordinated function of ClpB and DnaK/DnaJ/GrpE required ATP hydrolysis, although the ClpB ATPase was not activated by native or denatured luciferase. When the chaperones were added to the luciferase refolding solutions after 5-25 min of refolding, ClpB and DnaK/DnaJ/GrpE recovered the luciferase activity from preformed aggregates. Thus, we have identified a novel multi-chaperone system from E. coli, which is analogous to the Hsp104/Ssa1/Ydj1 system from yeast. ClpB is the only known bacterial Hsp100 protein capable of cooperating with other heat-shock proteins in suppressing and reversing protein aggregation.  相似文献   

15.
The possibility of using soluble cross-linked enzyme-albumin polymers as a means of enzyme therapy for the treatment of certain enzyme deficiency diseases is investigated. The hyperuricemic Dalmatian coach hound is used as an experimental animal and the enzyme uricase (urate oxidase) as the administered enzyme. Chemically cross-linking uricase with an excess of canine albumin yields a soluble enzyme polymer that is significantly more heat stable and resistant to proteolytic activity than the native enzyme. Intravenous administration of similar amounts of enzyme in the native or polymeric form indicated that the “solubilized” enzyme survived in the circulation for a longer period of time (clearance half-time of 26 hours as opposed to 4 hours for the native enzyme) and was more effective in lowering plasma uric acid levels for longer periods. In vivo administration of the native enzyme lowered uric acid levels by about 35% with a return to normal levels with a half-time of about 24 hours. Subsequent injections of native uricase proved less effective and produced a severe hypersensitivity reaction following the third injection. No such adverse reactions or decreased activity of the administered “solubilized” uricase-albumin polymers were observed. The plasma uric acid levels were decreased by about 40% and only after 48 hours did the substrate levels begin to rise towards their resting levels.  相似文献   

16.
Human serum albumin (HSA) was shown to mediate oligoribonucleotide cleavage. Nonenzymatic glycation of HSA decreased the ribonuclease-like activity of the protein. According to (31)P NMR data, both native and glycated albumins induced hydrolysis of RNA molecule through 2',3'-cyclophosphate intermediates. A feasible mechanism of RNA hydrolysis by native albumin and its clinically relevant modification was discussed.  相似文献   

17.
An amount of alpha-L-fucosidase from T. cornutus liver was copolymerized with glutaraldehyde using bovine serum albumin as the carrier protein. The properties of the native, the soluble enzyme polymer complex, and the insoluble enzyme polymer complex were studied and compared under various conditions of pH, temperature, substrate, and inhibitor concentration. Native alpha-L-fucosidase was heat labile and lost more than 85% of its activity when incubated at 55 degrees C for 5 min. In contrast, under equivalent incubation conditions, both the soluble and the insoluble enzyme polymer complexes exhibited enhanced resistance to thermal inactivation and after 5 min lost only 65 and 40% of their original activity, respectively. Polymerzation also resulted in the shift of pH optima towards the acidic range, a decrease in activation energy and a change in the apparent K(m) values towards the p-nitrophenyl-alpha-L-fucopyranoside substrate.  相似文献   

18.
The rate of formation of hydrophobic regions during refolding of bovine serum albumin was studied using 1-anilinonaphthalene-8-sulfonate as the hydrophobic fluorescent probe. The refolding of serum albumin exhibited a sigmoidal behavior. The exhibition of a lag phase followed by a faster kinetic phase suggested that the refolding is a cooperative, sequential process. Refolding under reducing conditions almost completely inhibited the regeneration of hydrophobic binding regions, suggesting that the formation of disulfide bonds plays an important role in the refolding of serum albumin. The rate and the extent of refolding was apparently maximum at about 20 degrees; at 37 degrees the extent of refolding was very low compared to that at the other temperatures studied. Based on the results, the mechanism of albumin refolding is interpreted in terms of domain structures and interdomain interactions.  相似文献   

19.
The refolding of beta-lactoglobulin, a beta-barrel protein consisting of beta strands betaA-betaI and one major helix, is unusual because non-native alpha-helices are formed at the beginning of the process. We studied the refolding kinetics of bovine beta-lactoglobulin A at pH 3 using the stopped-flow circular dichroism and manual H/(2)H exchange pulse labeling coupled with heteronuclear NMR. The protection pattern from the H/(2)H exchange of the native state indicated the presence of a stable hydrophobic core consisting of betaF, betaG and betaH strands. The protection pattern of the kinetic intermediate obtained about one second after initiating the reaction was compared with that of the native state. In this relatively late kinetic intermediate, which still contains some non-native helical structure, the disulfide-bonded beta-hairpin made up of betaG and betaH strands was formed, but the rest of the molecule was fluctuating, where the non-native alpha-helices may reside. Subsequently, the core beta-sheet extends, accompanied by a further alpha-helix to beta-sheet transition. Thus, the refolding of beta-lactoglobulin exhibits two elements: the critical role of the core beta-sheet is consistent with the hierarchic mechanism, whereas the alpha-helix to beta-sheet transition suggests the non-hierarchic mechanism.  相似文献   

20.
For production of active proteins using heterologous expression systems, refolding of proteins from inclusion bodies often creates a bottleneck due to its poor yield. In this study, we show that molecularly imprinted polymer (MIP) toward native lysozyme promotes the folding of chemically denatured lysozyme. The MIP, which was prepared with 1 M acrylamide, 1 M methacrylic acid, 1 M 2-(dimethylamino)ethyl methacrylate, and 5 mg/mL lysozyme, successfully promoted the refolding of lysozyme, whereas the non-imprinted polymer did not. The refolding yield of 90% was achieved when 15 mg of the MIP was added to 0.3 mg of the unfolded lysozyme. The parallel relationship between the refolding yield and the binding capacity of the MIP suggests that MIP promotes refolding through shifting the folding equilibrium toward the native form by binding the refolded protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号