首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of phosphoenolpyruvate carboxylase (PEPCase, EC. 4.1.1.31) and PEPCase kinase was investigated using barley (Hordeum vulgare L.) mesophyll protoplasts. Incubation of protoplasts in the light resulted in a reduction in the sensitivity of PEPCase to the inhibitor L-malate; PEPCase from protoplasts incubated in the light for 1 h was inhibited 48±2% by 2mM malate, whereas the enzyme from protoplasts incubated for 1 h in the dark was inhibited by 67±2%. Light-induced reduction of sensitivity of PEPCase to malate was decreased by cycloheximide (CHM), indicating the involvement of protein synthesis. The PEPCase kinase in protoplasts increased with time after isolation in darkness, and increased still further following light treatment. The increase in kinase activity in the light was sensitive to CHM. When protoplasts were illuminated in the presence of EGTA and the calcium ionophore A23187 to reduce intracellular Ca2+, the reduction in the senstivity of PEPCase to malate was enhanced, though no more PEPCase kinase activity was detected than in protoplasts illuminated in the absence of EGTA and A23187. Incubation with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) had no effect on the light-induced reduction of sensitivity of PEPCase to malate inhibition or on light-activation of PEPCase kinase. These results indicate that there is a constitutive PEPCase kinase activity in C3 leaf tissue, that there is another kinase which is light-activated in a CHMsensitive way, that the sensitivity of PEPCase to its inhibitor may not always be correlated with apparent PEPCase kinase actvity, and that PEPCase and PEPCase kinase are regulated in a different manner in C3 protoplasts than in C4 protoplasts or leaf tissue.Abbreviations CAM Crassulacean acid metabolism - Chl chlorophyll - CHM cycloheximide - DCMU 3-(3,4-dichloro-phenyl)-1,1-dimethylurea - PEP phosphoenolpyruvate - PEPCase PEP carboxylase  相似文献   

2.
C(4) phosphoenolpyruvate carboxylase (PEPCase: EC 4.1.1.31) is subjected to in vivo regulatory phosphorylation by a light up-regulated, calcium-independent protein kinase. Salt stress greatly enhanced phosphoenolpyruvate carboxylase-kinase (PEPCase-k) activity in leaves of Sorghum. The increase in PEPCase-k anticipated the time course of proline accumulation thereby suggesting that water stress was not involved in the kinase response to salt. Moreover, osmotic stress seemed not to be the main factor implicated, as demonstrated by the lack of effect when water availability was restricted by mannitol. In contrast, LiCl (at a concentration of 10 mM in short-term treatment of both excised leaves and whole plants) mimicked the effects of 172 mM NaCl salt-acclimation, indicating that the rise in PEPCase-k activity resulted primarily from the ionic stress. Both NaCl and LiCl treatments increased the activity of a Ca(2+)-independent, 35 kDa kinase, as demonstrated by an in-gel phosphorylation experiment. Short-term treatment of excised leaves with NaCl or LiCl partially reproduces the effects of whole plant treatments. Finally, salinization also increased PEPCase-k activity and the phosphorylation state of PEPCase in darkened Sorghum leaves. This fact, together with increased malate production during the dark period, suggests a shift towards mixed C(4) and crassulacean acid metabolism types of photosynthesis in response to salt stress.  相似文献   

3.
In C4 plants, the photosynthetic enzyme phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) is subjected to a phosphorylation process via the light-dependent up-regulation of a Ca2+-independent PEPCase-kinase. The present work aimed to study the effect of salt stress on PEPCase phosphorylation in Sorghum vulgare Pers. leaves. The growth of salt-treated plants was reduced compared with that of the control plants. PEPCase activity modestly increased (around 20-40%) whereas PEPCase phosphorylation was markedly enhanced, on a protein basis, in extracts from illuminated leaves. The enhanced protein kinase activity was found to display a low molecular mass in the range 32-35 kDa, to be independent of Ca2+ and to be up-regulated by light. Furthermore, up-regulation was blocked in vivo by the cytosolic protein synthesis inhibitor cycloheximide. Collectively, these data demonstrated that salinity stress altered the Ca2+-independent PEPCase-kinase, presumably by increasing the mesophyll content of the enzyme. Potassium chloride, but not abscisic acid, mimicked the effect of NaCl on PEPCase-kinase activity.  相似文献   

4.
In the present work, the effect of LiCl on phosphoenolpyruvate carboxylase kinase (PEPCase-k), C4 phosphoenolpyruvate carboxylase (PEPCase: EC 4.1.1.31) and its phosphorylation process has been investigated in illuminated leaf disks and leaves of the C4 plant Sorghum vulgare. Although this salt induced severe damages to older leaves, it did not significantly alter the physiological parameters (photosynthesis, transpiration rate, intercellular CO2 concentration) of young leaves. An immunological approach was used to demonstrate that the PEPCase-k protein accumulated rapidly in illuminated leaf tissues, consistent with the increase in its catalytic activity. In vivo, LiCl was shown to strongly enhance the light effect on PEPCase-k protein content, this process being dependent on protein synthesis. In marked contrast, the salt was found to inhibit the PEPCase-k activity in reconstituted assays and to decrease the C4 PEPCase content and phosphorylation state in LiCl treated plants. Short-term (15 min) LiCl treatment increased IP3 levels, PPCK gene expression, and PEPCase-k accumulation. Extending the treatment (1 h) markedly decreased IP3 and PPCK gene expression, while PEPCase-k activity was kept high. The cytosolic protein synthesis inhibitor cycloheximide (CHX), which blocked the light-dependent up-regulation of the kinase in control plants, was found not to be active on this process in preilluminated, LiCl-treated leaves. This suggested that the salt causes the kinase turnover to be altered, presumably by decreasing degradation of the corresponding polypeptide. Taken together, these results establish PEPCase-k and PEPCase phosphorylation as lithium targets in higher plants and that this salt can provide a means to investigate further the organization and functioning of the cascade controlling the activity of both enzymes.  相似文献   

5.
A reconstituted system composed of purified phosphoenolpyruvate carboxylase (PEP-Case) and a soluble protein kinase (PK) from green maize leaves was developed to critically assess the effects of in vitro protein phosphorylation on the catalytic and regulatory (malate sensitivity) properties of the target enzyme. The PK was partially purified from light-adapted leaf tissue by ammonium sulfate fractionation (0-60% saturation fraction) of a crude extract and blue dextran-agarose affinity chromatography. The resulting preparation was free of PEPCase. This partially purified protein kinase activated PEPCase from dark-adapted green maize leaves in an ATP-, Mg2+-, time-, and temperature-dependent fashion. Concomitant with these changes in PEPCase activity was a marked decrease in the target enzyme's sensitivity to feedback inhibition by L-malate. The PK-mediated incorporation of 32P from [gamma-32P]ATP into the protein substrate was directly correlated with these changes in PEPCase activity and malate sensitivity. The maximal molar 32P-incorporation value was about 0.25 per 100-kDa PEPCase subunit (i.e., 1 per holoenzyme). Phosphoamino acid analysis of the 32P-labeled target enzyme by two-dimensional thin-layer electrophoresis revealed the exclusive presence of phosphoserine. These in vitro results, together with our recent studies on the light-induced changes in phosphorylation status of green maize leaf PEPCase in vivo (J. A. Jiao and R. Chollet (1988) Arch. Biochem. Biophys. 261, 409-417), collectively provide the first unequivocal evidence that the seryl-phosphorylation of the dark-form enzyme by a soluble protein kinase is responsible for the changes in catalytic activity and malate sensitivity of C4 PEPCase observed in vivo during dark/light transitions of the parent leaf tissue.  相似文献   

6.
Summary Ananas comosus (L.) Merr. var. Smooth Cayenne plants when grown in vitro under different temperature regimes developed as CAM or as C3 plants. The plants used in this study were developed from the lateral buds of the nodal etiolated stem explants cultured on Murashige and Skoog medium for 3 mo. The cultures were maintained under a 16-h photoperiod for different thermoperiods. With 28°C light/15°C dark thermoperiod, as compared with constant 28°C light and dark, pineapple plants had a succulence index two times greater, and also a greater nocturnal titratable acidity and phosphoenolpyruvate carboxylase (PEPCase) activity, indicating CAM-type photosynthesis. The highest abscisic acid (ABA) level occurred during the light period, 8 h prior to maximum PEPCase activity, while the indole-3-acetic acid (IAA) peak was found during the dark period, coinciding with the time of highest PEPCase activity. These plants were also smaller with thicker leaves and fewer roots, but had greater dry weight. Their leaves showed histological characteristics of CAM plants, such as the presence of greater quantities of chlorenchyma and hypoderm. In addition, their vascular system was more conspicuous. In contrast, under constant temperature (28°C light/dark) plants showed little succulence in the leaves. There was no significant acid oscillation and diurnal variation in PEPCase activity in these plants, suggesting the occurrence of C3 photosynthesis. Also, no diurnal variation in ABA and IAA contents was observed. The results of this study clearly indicate a role for temperature in determining the type of carbon fixation pathway in in vitro grown pineapple. Evidence that ABA and IAA participate in CAM signaling is provided.  相似文献   

7.
Abstract

β‐galactosidase has been chosen as an indicator of glycoprotein metabolism in Acetabularia, an unicellular and uninucleate green alga. This catabolic enzyme was quantified by fluorecence spectrometry. It was found at all developmental stages, but the activity levels differed, peaking at the end of the growth phase, at the time of cap morphogenesis initiation, β‐galactosidase activity is also subjected to periodic modulation, displaying a bimodal rhythm with a prominent peak at 16 h. The distribution of the enzyme was examined by cytochemistry, using a substrate analogue (X‐gal). It is present both in the cytoplasm and in the cell wall. No apico‐basal gradient was detectable. The physiological role of glycoproteins was assessed with tunicamycin, an inhibitor of N‐linked glycoprotein synthesis. Two pulses of 3 or 4 h of inhibitor (10 μg ml‐1) always inhibited growth, but more severely during the light period. One pulse may inhibit growth during the light period and stimulate it during the dark one; it may also have little effect, in both periods. Cap formation is inhibited between time 0 and 7. During the dark or subjective dark period, it is often stimulated or not affected. The same results were obtained in constant light. Cap formation is also inhibited in anucleate algae treated during the light period.  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPCase) from light- and dark-adapted maize leaves was rapidly purified in the presence of L-malate and glycerol to apparent electrophoretic homogeneity by ammonium sulfate fractionation, hydroxylapatite chromatography, and fast-protein liquid chromatography on Mono Q. The resulting preparations were totally devoid of pyruvate, orthophosphate dikinase protein based on immunoblot analysis. Throughout the purification, both forms of PEPCase retained their different enzymatic properties. The specific activity of the light enzyme was consistently about twice that of the dark form when assayed at suboptimal (but physiological) pH (pH 7.0-7.3), and the former was also less sensitive to feedback inhibition by L-malate than that from darkened leaves under various conditions. Covalently bound phosphate and high-performance liquid chromatography-based phosphoamino acid analyses showed that both forms of purified PEPCase were phosphorylated exclusively on serine residues, but the degree of phosphorylation was about 50% greater in the light enzyme. Notably, incubation of purified PEPCase in vitro with exogenous alkaline phosphatase led to an increase in malate sensitivity and a decrease in specific activity of the light form enzyme to levels observed with the dark form, which was essentially not affected by phosphatase treatment. These results with the purified enzyme from light- and dark-adapted maize leaves indicate that the light-induced changes in activity and malate sensitivity of C4 PEPCase are related, at least in part, to the degree of covalent seryl phosphorylation of the protein in vivo.  相似文献   

9.
Slight flutuation in carbon isotope values were found in counted from top dounward to the 35th in pineapple, Ananas comosus (L.) Merr., but more negative δ13C value (less heavier 13C) was observed in lower position leaves. The average δ 13C value was –12.94‰ in 11 leaves with maximum range of variation as –2.06‰. Similar single peak curves were found between PEPCase and PEP carboxykinase activities with leaves at various positions. Both enzymes reached the maximum activity in 8—11th leaves, then declined in others at lower positions. PEP carboxykinase activity was 3.4 folds higher than PEPCase activity under the present experimental condition (25—30 ℃). The results indicated that metabolic coordination evisted between dark carboxylation and light decarboxylation. For the obligate CAM plant, pineapple, though the carboxylation and decarxylation activities did occur in old leaves, the CAM level change did much, however.  相似文献   

10.
Light-regulated gene expression during maize leaf development   总被引:43,自引:2,他引:41       下载免费PDF全文
We have established schedules of expression during maize leaf development in light and darkness for the messenger RNAs (mRNAs) and polypeptides for ribulose 1,5-bisphosphate carboxylase (RuBPCase) subunits, phosphoenolpyruvate carboxylase (PEPCase), and the light- harvesting chlorophyll a/b-binding protein (LHCP). Levels of mRNAs were measured by hybridization with cloned probes, and proteins were measured by immunodetection on protein gel blots. The initial synthesis in leaves of all four mRNAs follows a light-independent schedule; illumination influences only the level to which each mRNA accumulates. The synthesis of RuBPCase small and large subunits and of PEPCase polypeptides also follows a light-independent schedule which is modified quantitatively by light. However, the accumulation of LHCP polypeptides absolutely requires illumination. The accumulation of each protein closely follows the accumulation of its mRNA during growth in light. Higher ratios of PEPCase and RuBPCase protein to mRNA occur during dark growth.  相似文献   

11.
The light dependence of D1 phosphorylation is unique to higher plants, being constitutive in cyanobacteria and algae. In a photoautotrophic higher plant, Spirodela oligorrhiza, grown in greenhouse conditions under natural diurnal cycles of solar irradiation, the ratio of phosphorylated versus total D1 protein (D1-P index: [D1-P]/[D1] + [D1-P]) of photosystem II is shown to undergo reproducible diurnal oscillation. These oscillations were clearly out of phase with the period of maximum in light intensity. The timing of the D1-P index maximum was not affected by changes in temperature, the amount of D1 kinase activity present in the thylakoid membranes, the rate of D1 protein synthesis, or photoinhibition. However, when the dark period in a normal diurnal cycle was cut short artificially by transferring plants to continuous light conditions, the D1-P index timing shifted and reached a maximum within 4 to 5 h of light illumination. The resultant diurnal oscillation persisted for at least two cycles in continuous light, suggesting that the rhythm is endogenous (circadian) and is entrained by an external signal.  相似文献   

12.
Mesembryanthemum crystallinum responds to salt stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). During this transition the activity of phosphoenolpyruvate carboxylase (PEPCase) increases in soluble protein extracts from leaf tissue. We monitored CAM induction in plants irrigated with 0.5 molar NaCl for 5 days during the fourth, fifth, and sixth week after germination. Our results indicate that the age of the plant influenced the response to salt stress. There was no increase in PEPCase protein or PEPCase enzyme activity when plants were irrigated with 0.5 molar NaCl during the fourth and fifth week after germination. However, PEPCase activity increased within 2 to 3 days when plants were salt stressed during the sixth week after germination. Immunoblot analysis with anti-PEPCase antibodies showed that PEPCase synthesis was induced in both expanded leaves and in newly developing axillary shoot tissue. The increase in PEPCase protein was paralleled by an increase in PEPCase mRNA as assayed by immunoprecipitation of PEPCase from the in vitro translation products of RNA from salt-stressed plants. These results demonstrate that salinity increased the level of PEPCase in leaf and shoot tissue via a stress-induced increase in the steady-state level of translatable mRNA for this enzyme.  相似文献   

13.
Rat liver sterol carrier protein (SCP), a major regulator of lipid metabolism and transport, undergoes a rapid turnover and dramatic circadian variation in amount. The level of SCP was quantitated by a specific immunochemical assay using an antibody to homogeneous liver SCP. During a 12-h dark, 12-h light cycle, liver exhibits a biphasic pattern in SCP level. A 7-fold increase in SCP (i.e. from 1 to 7 mg/g of liver) occurs in the dark period, peaking at the midpoint and returning to basal levels by the beginning of the light period. A similar but smaller pattern of variation in SCP amount occurs in the light cycle. To elucidate the basic mechanism responsible for these changes in SCP level, the relative synthetic rate of SCP and mRNA functional activity for SCP were measured during the dark-light cycle. Alterations in the rate of SCP synthesis can account for the variations in SCP concentration. Although large changes occur in relative synthetic rate, no significant changes were found in the level of mRNA for SCP. Therefore, the circadian rhythm in SCP synthesis and amount does not reflect variations in the concentration of mRNA for SCP, but instead is caused by some mechanism controlling the efficiency of translation of SCP mRNA.  相似文献   

14.
15.
Leport  Laurent  Kandlbinder  Andrea  Baur  Bernhard  Kaiser  Werner M. 《Planta》1996,198(4):495-501
Phosphoenolpyruvate (PEP) carboxylation was measured as dark 14CO2 fixation in leaves and roots (in vivo) or as PEP carboxylase (PEPCase) activity in desalted leaf and roof extracts (in vitro) from Pisum sativum L. cv. Kleine Rheinländerin. Its relation to the malate content and to the nitrogen source (nitrate or ammonium) was investigated. In tissue from nitrate-grown plants, PEP carboxylation varied diurnally, showing an increase upon illumination and a decrease upon darkening. Diurnal variations in roots were much lower than in leaves. Fixation rates in leaves remained constantly low in continuous darkness or high in continuous light. Dark CO2 fixation of leaf slices also decreased when leaves were preilluminated for 1 h in CO2-free air, suggesting that the modulation of dark CO2 fixation was related to assimilate availability in leaves and roots. Phosphoenolpyruvate carboxylase activity was also measured in vitro. However, no difference in maximum enzyme activity was found in extracts from illuminated or darkened leaves, and the response to substrate and effectors (PEP, malate, glucose-6-phosphate, pH) was also identical. The serine/threonine protein kinase inhibitors K252b, H7 and staurosporine, and the protein phosphatase 2A inhibitors okadaic acid and cantharidin, fed through the leaf petiole, did not have the effects on dark CO2 fixation predicted by a regulatory system in which PEPCase is modulated via reversible protein phosphorylation. Therefore, it is suggested that the diurnal modulation of PEP carboxylation in vivo in leaves and roots of pea is not caused by protein phosphorylation, but rather by direct allosteric effects. Upon transfer of plants to ammonium-N or to an N-free nutrient solution, mean daily malate levels in leaves decreased drastically within 4–5 d. At that time, the diurnal oscillations of PEP carboxylation in vivo disappeared and rates remained at the high light-level. The coincidence of the two events suggests that PEPCase was de-regulated because malate levels became very low. The drastic decrease of leaf malate contents upon transfer of plants from nitrate to ammonium nutrition was apparently not caused by increased amino acid or protein synthesis, but probably by higher decarboxylation rates.Abbreviations CAM crassulacean acid metabolism - PEP Phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PP protein phosphatase - PK protein kinase This work was supported by the Deutsche Forschungsgemeinschaft. B. Baur was a recipient of a doctoral grant, and L. Leport recipient of a post-doctoral grant of the DFG. The skilled technical assistance of Eva Wirth and Maria Lesch is gratefully acknowledged.  相似文献   

16.
The rhythm of CO2 assimilation exhibited by leaves of Bryophyllum fedtschenkoi maintained in light and normal air occurs only at constant ambient temperatures between 10°C and 30°C. Over this range the period increases linearly with increasing temperature from the extremely low value of 15.7 h to 23.3 h, but shows a considerable degree of temperature compensation. Outside the range 10°C–30°C the rhythm is inhibited but re-starts on changing the temperature to 15°C. Prolonged exposure of leaves to high (40°C) and low (2°C) temperature inhibits the rhythm by driving the basic oscillator to fixed phase points in the cycle which differ by 180°, and which have been characterised in terms of the malate status of the leaf cells. At both temperatures loss of the circadian rhythm of CO2 assimilation is due to the inhibition of phosphoenolpyruvate carboxylase (PEPCase) activity, but the inhibition is apparently achieved in different ways at 40°C and 2°C. High temperature appears to inhibit directly PEPCase activity, but not the activity of the enzymes responsible for the breakdown of malate, with the result that the leaf acquires a low malate status. In contrast, low temperature does not directly inhibit PEPCase activity, but does inhibit enzymes responsible for malate breakdown, so that the malate level in the leaf increases to a high value and PEPCase is eventually allosterically inhibited. The different malate status of leaves held at these two temperatures accounts for the phases of the rhythms being reversed on returning the leaves to 15°C. After exposure to high temperature, CO2 fixation by PEPCase activity can begin immediately, whereas after exposure to low temperature, the large amount of malate accumulated in the leaves has to be decarboxylated before CO2 fixation can begin.  相似文献   

17.
Untransformed maize and tobacco plants and tobacco plants constitutively expressing nitrate reductase were grown with sufficient NO(3)- to support maximal growth. Four days prior to treatment the tobacco plants were deprived of nitrogen. Excised maize leaves and tobacco leaf discs were fed with either 40 mM KNO(3) or 40 mM KCl (control) in the light. Phosphoenolpyruvate (PEP) carboxylase (Case) activity was measured at 0.3 mM and 3 mM PEP. The light- induced increase in PEPCase V(max) was greater in maize than tobacco. Furthermore light decreased malate sensitivity in maize (which was N-replete) but not in N-deficient tobacco. NO(3)- treatment increased PEPCase V:(max) values in both species and decreased the sensitivity to inhibition by malate, but effects of NO(3)- were much more pronounced in tobacco than maize. PEPCase kinase activity was, however, greater in maize leaves NO(3)- than in the Cl(-)-treated controls, suggesting that it is responsive to leaf nitrogen supply. A correlation between foliar glutamine content and PEPCase activity was observed. It is concluded that PEPCase is sensitive to N metabolites which favour increased flow through the anapleurotic pathway in both C(3) and C(4) plants.  相似文献   

18.
Cyclic AMP-dependent protein kinase activity in supernatants of homogenates of kidneys from vitamin D-deficient chicks is decreased to 70% of the level measured in kidneys from normal chicks. Activity was restored to normal by oral administration of vitamin D or 1,25-dihydroxyvitamin D3 for 1 or 2 weeks. Both isozymes of cAMP-dependent protein kinase were reduced to the same extent by vitamin D deficiency. The decreased enzyme activity could not be accounted for by a shift to the particulate fraction nor by an increased requirement for cyclic AMP. A heat stable, trichloroacetic acid-precipitable, trypsin-labile inhibitor of protein kinase activity was identified and quantitated in kidneys from vitamin D-deficient chicks (16 to 26 units/mg of protein) and from those given vitamin D (2 to 6 units/mg of protein). The measured difference in inhibitor levels could not be attributed to differential stability in kidney homogenates from vitamin D-deficient or -repleted chicks. The observed increase in inhibitor level with vitamin D deficiency is not sufficient to account for the decrease in cyclic AMP-dependent protein kinase activity, suggesting that the total amount of this enzyme activity is reduced in vitamin D deficiency.  相似文献   

19.
M Li  J W West  Y Lai  T Scheuer  W A Catterall 《Neuron》1992,8(6):1151-1159
Voltage-gated Na+ channels, which are responsible for the generation of action potentials in brain, are phosphorylated by cAMP-dependent protein kinase in vitro and in intact neurons. Phosphorylation by cAMP-dependent protein kinase reduces peak Na+ currents 40%--50% in membrane patches excised from rat brain neurons or from CHO cells expressing type IIA Na+ channels. Inhibition of basal cAMP-dependent protein kinase activity by transfection with a plasmid encoding a dominant negative mutant regulatory subunit increases Na+ channel number and activity, indicating that even the basal level of kinase activity is sufficient to reduce Na+ channel activity significantly. Na+ currents in membrane patches from kinase-deficient cells were reduced up to 80% by phosphorylation by cAMP-dependent protein kinase. These effects could be blocked by a specific peptide inhibitor of cAMP-dependent protein kinase and reversed by phosphoprotein phosphatases. Convergent modulation of brain Na+ channels by neurotransmitters acting through the cAMP and protein kinase C signaling pathways may result in associative regulation of electrical activity by different synaptic inputs.  相似文献   

20.
A competitive radioimmunoassay for the quantitation of diamine oxidase (EC 1.4.3.6) from Lens culinaris is reported. Specific antibodies raised in rabbits immunized with a homogeneous preparation of the enzyme were incubated with purified 125I-enzyme and with either unlabeled diamine oxidase or plant material. Antigen-antibody complexes were isolated from the mixture by incubation with Staphylococcus protein A. The sensitivity of the test was about 5 nanograms in terms of enzyme protein. This assay was applied to the determination of the enzyme in extracts from lentil shoots grown either in the dark or in the light. Diamine oxidase activity and enzyme protein (as determined by radioimmunoassay) were measured during 7 days after germination. Both enzymic activity and enzyme protein declined slowly in the dark and rapidly in the light. These results indicate that fluctuation of the enzymic activity in this organ, both in the light and in the dark, are mediated via changes in the amount of the enzyme protein and not via the action of an inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号