首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
Zhu Y  Li T  Li D  Zhang Y  Xiong W  Sun J  Tang Z  Chen G 《Amino acids》2012,42(5):1749-1755
Numerous methods for predicting γ-turns in proteins have been developed. However, the results they generally provided are not very good, with a Matthews correlation coefficient (MCC) ≤0.18. Here, an attempt has been made to develop a method to improve the accuracy of γ-turn prediction. First, we employ the geometric mean metric as optimal criterion to evaluate the performance of support vector machine for the highly imbalanced γ-turn dataset. This metric tries to maximize both the sensitivity and the specificity while keeping them balanced. Second, a predictor to generate protein shape string by structure alignment against the protein structure database has been designed and the predicted shape string is introduced as new variable for γ-turn prediction. Based on this perception, we have developed a new method for γ-turn prediction. After training and testing the benchmark dataset of 320 non-homologous protein chains using a fivefold cross-validation technique, the present method achieves excellent performance. The overall prediction accuracy Q total can achieve 92.2% and the MCC is 0.38, which outperform the existing γ-turn prediction methods. Our results indicate that the protein shape string is useful for predicting protein tight turns and it is reasonable to use the dihedral angle information as a variable for machine learning to predict protein folding. The dataset used in this work and the software to generate predicted shape string from structure database can be obtained from anonymous ftp site freely.  相似文献   

2.
Bayesian segmentation of protein secondary structure.   总被引:12,自引:0,他引:12  
We present a novel method for predicting the secondary structure of a protein from its amino acid sequence. Most existing methods predict each position in turn based on a local window of residues, sliding this window along the length of the sequence. In contrast, we develop a probabilistic model of protein sequence/structure relationships in terms of structural segments, and formulate secondary structure prediction as a general Bayesian inference problem. A distinctive feature of our approach is the ability to develop explicit probabilistic models for alpha-helices, beta-strands, and other classes of secondary structure, incorporating experimentally and empirically observed aspects of protein structure such as helical capping signals, side chain correlations, and segment length distributions. Our model is Markovian in the segments, permitting efficient exact calculation of the posterior probability distribution over all possible segmentations of the sequence using dynamic programming. The optimal segmentation is computed and compared to a predictor based on marginal posterior modes, and the latter is shown to provide significant improvement in predictive accuracy. The marginalization procedure provides exact secondary structure probabilities at each sequence position, which are shown to be reliable estimates of prediction uncertainty. We apply this model to a database of 452 nonhomologous structures, achieving accuracies as high as the best currently available methods. We conclude by discussing an extension of this framework to model nonlocal interactions in protein structures, providing a possible direction for future improvements in secondary structure prediction accuracy.  相似文献   

3.
Kaur H  Raghava GP 《Proteins》2004,55(1):83-90
In this paper a systematic attempt has been made to develop a better method for predicting alpha-turns in proteins. Most of the commonly used approaches in the field of protein structure prediction have been tried in this study, which includes statistical approach "Sequence Coupled Model" and machine learning approaches; i) artificial neural network (ANN); ii) Weka (Waikato Environment for Knowledge Analysis) Classifiers and iii) Parallel Exemplar Based Learning (PEBLS). We have also used multiple sequence alignment obtained from PSIBLAST and secondary structure information predicted by PSIPRED. The training and testing of all methods has been performed on a data set of 193 non-homologous protein X-ray structures using five-fold cross-validation. It has been observed that ANN with multiple sequence alignment and predicted secondary structure information outperforms other methods. Based on our observations we have developed an ANN-based method for predicting alpha-turns in proteins. The main components of the method are two feed-forward back-propagation networks with a single hidden layer. The first sequence-structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position specific scoring matrices. The initial predictions obtained from the first network and PSIPRED predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. The final network yields an overall prediction accuracy of 78.0% and MCC of 0.16. A web server AlphaPred (http://www.imtech.res.in/raghava/alphapred/) has been developed based on this approach.  相似文献   

4.
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.  相似文献   

5.
We have introduced a new method of protein secondary structure prediction which is based on the theory of support vector machine (SVM). SVM represents a new approach to supervised pattern classification which has been successfully applied to a wide range of pattern recognition problems, including object recognition, speaker identification, gene function prediction with microarray expression profile, etc. In these cases, the performance of SVM either matches or is significantly better than that of traditional machine learning approaches, including neural networks.The first use of the SVM approach to predict protein secondary structure is described here. Unlike the previous studies, we first constructed several binary classifiers, then assembled a tertiary classifier for three secondary structure states (helix, sheet and coil) based on these binary classifiers. The SVM method achieved a good performance of segment overlap accuracy SOV=76.2 % through sevenfold cross validation on a database of 513 non-homologous protein chains with multiple sequence alignments, which out-performs existing methods. Meanwhile three-state overall per-residue accuracy Q(3) achieved 73.5 %, which is at least comparable to existing single prediction methods. Furthermore a useful "reliability index" for the predictions was developed. In addition, SVM has many attractive features, including effective avoidance of overfitting, the ability to handle large feature spaces, information condensing of the given data set, etc. The SVM method is conveniently applied to many other pattern classification tasks in biology.  相似文献   

6.
7.
A composite vector method for predicting β-hairpin motifs in proteins is proposed by combining the score of matrix, increment of diversity, the value of distance and auto-correlation information to express the information of sequence. The prediction is based on analysis of data from 3,088 non-homologous protein chains including 6,035 β-hairpin motifs and 2,738 non-β-hairpin motifs. The overall accuracy of prediction and Matthew’s correlation coefficient are 83.1% and 0.59, respectively. In addition, by using the same methods, the accuracy of 80.7% and Matthew’s correlation coefficient of 0.61 are obtained for other dataset with 2,878 non-homologous protein chains, which contains 4,884 β-hairpin motifs and 4,310 non-β-hairpin motifs. Better results are also obtained in the prediction of the β-hairpin motifs of proteins by analysis of the CASP6 dataset.  相似文献   

8.
Improved method for predicting beta-turn using support vector machine   总被引:2,自引:0,他引:2  
MOTIVATION: Numerous methods for predicting beta-turns in proteins have been developed based on various computational schemes. Here, we introduce a new method of beta-turn prediction that uses the support vector machine (SVM) algorithm together with predicted secondary structure information. Various parameters from the SVM have been adjusted to achieve optimal prediction performance. RESULTS: The SVM method achieved excellent performance as measured by the Matthews correlation coefficient (MCC = 0.45) using a 7-fold cross validation on a database of 426 non-homologous protein chains. To our best knowledge, this MCC value is the highest achieved so far for predicting beta-turn. The overall prediction accuracy Qtotal was 77.3%, which is the best among the existing prediction methods. Among its unique attractive features, the present SVM method avoids overtraining and compresses information and provides a predicted reliability index.  相似文献   

9.
We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on the dictionary of secondary structure prediction (DSSP)-generated secondary structure for 408 selected non-homologous proteins. To the amino acid triplets which are not found in the selected dataset, a DP value of zero is assigned with respect to the secondary structural elements of proteins. The total number of parameters generated is 15,432, in the possible parameters of 25,260. Deviation parameter is complete with respect to amino acid singlets, doublets, and partially complete with respect to amino acid triplets. These generated parameters were used to predict secondary structural elements from amino acid sequence. The secondary structure predicted by our method (SSPDP) was compared with that of single sequence (NNPREDICT) and multiple sequence (PHD) methods. The average value of the percentage of prediction accuracy for a helix by SSPDP, NNPREDICT and PHD methods was found to be 57%, 44% and 69% respectively for the proteins in the selected dataset. For b-strand the prediction accuracy is found to be 69%, 21% and 53% respectively by SSPDP, NNPREDICT and PHD methods. This clearly indicates that the secondary structure prediction by our method is as good as PHD method but much better than NNPREDICT method.  相似文献   

10.
Is it better to combine predictions?   总被引:2,自引:0,他引:2  
We have compared the accuracy of the individual protein secondary structure prediction methods: PHD, DSC, NNSSP and Predator against the accuracy obtained by combing the predictions of the methods. A range of ways of combing predictions were tested: voting, biased voting, linear discrimination, neural networks and decision trees. The combined methods that involve 'learning' (the non-voting methods) were trained using a set of 496 non-homologous domains; this dataset was biased as some of the secondary structure prediction methods had used them for training. We used two independent test sets to compare predictions: the first consisted of 17 non-homologous domains from CASP3 (Third Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction); the second set consisted of 405 domains that were selected in the same way as the training set, and were non-homologous to each other and the training set. On both test datasets the most accurate individual method was NNSSP, then PHD, DSC and the least accurate was Predator; however, it was not possible to conclusively show a significant difference between the individual methods. Comparing the accuracy of the single methods with that obtained by combing predictions it was found that it was better to use a combination of predictions. On both test datasets it was possible to obtain a approximately 3% improvement in accuracy by combing predictions. In most cases the combined methods were statistically significantly better (at P = 0.05 on the CASP3 test set, and P = 0.01 on the EBI test set). On the CASP3 test dataset there was no significant difference in accuracy between any of the combined method of prediction: on the EBI test dataset, linear discrimination and neural networks significantly outperformed voting techniques. We conclude that it is better to combine predictions.  相似文献   

11.
Xu Z  Zhang C  Liu S  Zhou Y 《Proteins》2006,63(4):961-966
Solvent accessibility, one of the key properties of amino acid residues in proteins, can be used to assist protein structure prediction. Various approaches such as neural network, support vector machines, probability profiles, information theory, Bayesian theory, logistic function, and multiple linear regression have been developed for solvent accessibility prediction. In this article, a much simpler quadratic programming method based on the buriability parameter set of amino acid residues is developed. The new method, called QBES (Quadratic programming and Buriability Energy function for Solvent accessibility prediction), is reasonably accurate for predicting the real value of solvent accessibility. By using a dataset of 30 proteins to optimize three parameters, the average correlation coefficients between the predicted and actual solvent accessibility are about 0.5 for all four independent test sets ranging from 126 to 513 proteins. The method is efficient. It takes only 20 min for a regular PC to obtain results of 30 proteins with an average length of 263 amino acids. Although the proposed method is less accurate than a few more sophisticated methods based on neural network or support vector machines, this is the first attempt to predict solvent accessibility by energy optimization with constraints. Possible improvements and other applications of the method are discussed.  相似文献   

12.
We present a new method for predicting the secondary structure of globular proteins based on non-linear neural network models. Network models learn from existing protein structures how to predict the secondary structure of local sequences of amino acids. The average success rate of our method on a testing set of proteins non-homologous with the corresponding training set was 64.3% on three types of secondary structure (alpha-helix, beta-sheet, and coil), with correlation coefficients of C alpha = 0.41, C beta = 0.31 and Ccoil = 0.41. These quality indices are all higher than those of previous methods. The prediction accuracy for the first 25 residues of the N-terminal sequence was significantly better. We conclude from computational experiments on real and artificial structures that no method based solely on local information in the protein sequence is likely to produce significantly better results for non-homologous proteins. The performance of our method of homologous proteins is much better than for non-homologous proteins, but is not as good as simply assuming that homologous sequences have identical structures.  相似文献   

13.
Lipocalins are functionally diverse proteins that are composed of 120–180 amino acid residues. Members of this family have several important biological functions including ligand transport, cryptic coloration, sensory transduction, endonuclease activity, stress response activity in plants, odorant binding, prostaglandin biosynthesis, cellular homeostasis regulation, immunity, immunotherapy and so on. Identification of lipocalins from protein sequence is more challenging due to the poor sequence identity which often falls below the twilight zone. So far, no specific method has been reported to identify lipocalins from primary sequence. In this paper, we report a support vector machine (SVM) approach to predict lipocalins from protein sequence using sequence-derived properties. LipoPred was trained using a dataset consisting of 325 lipocalin proteins and 325 non-lipocalin proteins, and evaluated by an independent set of 140 lipocalin proteins and 21,447 non-lipocalin proteins. LipoPred achieved 88.61% accuracy with 89.26% sensitivity, 85.27% specificity and 0.74 Matthew’s correlation coefficient (MCC). When applied on the test dataset, LipoPred achieved 84.25% accuracy with 88.57% sensitivity, 84.22% specificity and MCC of 0.16. LipoPred achieved better performance rate when compared with PSI-BLAST, HMM and SVM-Prot methods. Out of 218 lipocalins, LipoPred correctly predicted 194 proteins including 39 lipocalins that are non-homologous to any protein in the SWISSPROT database. This result shows that LipoPred is potentially useful for predicting the lipocalin proteins that have no sequence homologs in the sequence databases. Further, successful prediction of nine hypothetical lipocalin proteins and five new members of lipocalin family prove that LipoPred can be efficiently used to identify and annotate the new lipocalin proteins from sequence databases. The LipoPred software and dataset are available at .  相似文献   

14.
Due to the slightly success of protein secondary structure prediction using the various algorithmic and non-algorithmic techniques, similar techniques have been developed for predicting γ-turns in proteins by Kaur and Raghava [2003. A neural-network based method for prediction of γ-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods was inability in predicting γ-turn types. In a recent investigation we introduced a sequence based predictor model for predicting γ-turn types in proteins [Jahandideh, S., Sabet Sarvestani, A., Abdolmaleki, P., Jahandideh, M., Barfeie, M, 2007a. γ-turn types prediction in proteins using the support vector machines. J. Theor. Biol. 249, 785-790]. In the present work, in order to analyze the effect of sequence and structure in the formation of γ-turn types and predicting γ-turn types in proteins, we applied novel hybrid neural discriminant modeling procedure. As the result, this study clarified the efficiency of using the statistical model preprocessors in determining the effective parameters. Moreover, the optimal structure of neural network can be simplified by a preprocessor in the first stage of hybrid approach, thereby reducing the needed time for neural network training procedure in the second stage and the probability of overfitting occurrence decreased and a high precision and reliability obtained in this way.  相似文献   

15.
MOTIVATION: Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. RESULTS: We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. AVAILABILITY: The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide  相似文献   

16.
J M Chandonia  M Karplus 《Proteins》1999,35(3):293-306
A primary and a secondary neural network are applied to secondary structure and structural class prediction for a database of 681 non-homologous protein chains. A new method of decoding the outputs of the secondary structure prediction network is used to produce an estimate of the probability of finding each type of secondary structure at every position in the sequence. In addition to providing a reliable estimate of the accuracy of the predictions, this method gives a more accurate Q3 (74.6%) than the cutoff method which is commonly used. Use of these predictions in jury methods improves the Q3 to 74.8%, the best available at present. On a database of 126 proteins commonly used for comparison of prediction methods, the jury predictions are 76.6% accurate. An estimate of the overall Q3 for a given sequence is made by averaging the estimated accuracy of the prediction over all residues in the sequence. As an example, the analysis is applied to the target beta-cryptogein, which was a difficult target for ab initio predictions in the CASP2 study; it shows that the prediction made with the present method (62% of residues correct) is close to the expected accuracy (66%) for this protein. The larger database and use of a new network training protocol also improve structural class prediction accuracy to 86%, relative to 80% obtained previously. Secondary structure content is predicted with accuracy comparable to that obtained with spectroscopic methods, such as vibrational or electronic circular dichroism and Fourier transform infrared spectroscopy.  相似文献   

17.
A popular approach to detecting positive selection is to estimate the parameters of a probabilistic model of codon evolution and perform inference based on its maximum likelihood parameter values. This approach has been evaluated intensively in a number of simulation studies and found to be robust when the available data set is large. However, uncertainties in the estimated parameter values can lead to errors in the inference, especially when the data set is small or there is insufficient divergence between the sequences. We introduce a Bayesian model comparison approach to infer whether the sequence as a whole contains sites at which the rate of nonsynonymous substitution is greater than the rate of synonymous substitution. We incorporated this probabilistic model comparison into a Bayesian approach to site-specific inference of positive selection. Using simulated sequences, we compared this approach to the commonly used empirical Bayes approach and investigated the effect of tree length on the performance of both methods. We found that the Bayesian approach outperforms the empirical Bayes method when the amount of sequence divergence is small and is less prone to false-positive inference when the sequences are saturated, while the results are indistinguishable for intermediate levels of sequence divergence.  相似文献   

18.
Nonlinear system modelling via optimal design of neural trees   总被引:1,自引:0,他引:1  
This paper introduces a flexible neural tree model. The model is computed as a flexible multi-layer feed-forward neural network. A hybrid learning/evolutionary approach to automatically optimize the neural tree model is also proposed. The approach includes a modified probabilistic incremental program evolution algorithm (MPIPE) to evolve and determine a optimal structure of the neural tree and a parameter learning algorithm to optimize the free parameters embedded in the neural tree. The performance and effectiveness of the proposed method are evaluated using function approximation, time series prediction and system identification problems and compared with the related methods.  相似文献   

19.
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interaction data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automatically selects the most appropriate functional classes as specific as possible during the learning process, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.  相似文献   

20.
A pair of neural network-based algorithms is presented for predicting the tertiary structural class and the secondary structure of proteins. Each algorithm realizes improvements in accuracy based on information provided by the other. Structural class prediction of proteins nonhomologous to any in the training set is improved significantly, from 62.3% to 73.9%, and secondary structure prediction accuracy improves slightly, from 62.26% to 62.64%. A number of aspects of neural network optimization and testing are examined. They include network overtraining and an output filter based on a rolling average. Secondary structure prediction results vary greatly depending on the particular proteins chosen for the training and test sets; consequently, an appropriate measure of accuracy reflects the more unbiased approach of “jackknife” cross-validation (testing each protein in the database individually).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号