首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Internal viscoelastic loading in cat papillary muscle.   总被引:4,自引:0,他引:4       下载免费PDF全文
The passive mechanical properties of myocardium were defined by measuring force responses to rapid length ramps applied to unstimulated cat papillary muscles. The immediate force changes following these ramps recovered partially to their initial value, suggesting a series combination of viscous element and spring. Because the stretched muscle can bear force at rest, the viscous element must be in parallel with an additional spring. The instantaneous extension-force curves measured at different lengths were nonlinear, and could be made to superimpose by a simple horizontal shift. This finding suggests that the same spring was being measured at each length, and that this spring was in series with both the viscous element and its parallel spring (Voigt configuration), so that the parallel spring is held nearly rigid by the viscous element during rapid steps. The series spring in the passive muscle could account for most of the series elastic recoil in the active muscle, suggesting that the same spring is in series with both the contractile elements and the viscous element. It is postulated that the viscous element might be coupled to the contractile elements by a compliance, so that the load imposed on the contractile elements by the passive structures is viscoelastic rather than purely viscous. Such a viscoelastic load would give the muscle a length-independent, early diastolic restoring force. The possibility is discussed that the length-independent restoring force would allow some of the energy liberated during active shortening to be stored and released during relaxation.  相似文献   

3.
4.
The lengths and pinnation angles of muscle fibers in the medial gastrocnemius (MG) muscle have recently been measured in freely moving cats [Hoffer et al., Progr. Brain Res. 80, 75-85 (1989); Muscle Afferents and Spinal Control of Movement (1992)] using an ultrasound transit-time (USTT) technique. This method assumed that the velocity of ultrasound through intact muscles was constant, independent of fiber orientation, muscle activity, load, belly shape, or fiber movement. However, the velocity of ultrasound along and across the fibers has been reported to depend on the state of muscle activation in frog muscle experiments in vitro [Hatta et al., J. Physiol. 403, 193-209 (1988)]. In the present study, the assumption of constant velocity of ultrasound in the cat MG muscle was evaluated. In acute experiments, done in situ with intact blood supply, the USTT was measured along and across cat MG muscle fibers in the passive, reflexly activated and tetanically activated states, with and without changes in muscle fiber length, for situations that reproduced the length and force ranges normally used by cats during locomotion. The velocity of ultrasound was found to be independent of the state of activation or motion of the muscle, and independent of the direction of the measurement with respect to the fiber orientation, within a measurement uncertainty less than or equal to 0.2%. These results validate the use of the USTT technique for the measurement of intramuscular dimensions in freely moving animals.  相似文献   

5.
Active and passive shortening of muscle bundles in the canine diaphragm were measured with the objective of testing a consequence of the minimal-work hypothesis: namely, that the ratio of active to passive shortening is the same for all active muscles. Lengths of six muscle bundles in the costal diaphragm and two muscle bundles in the crural diaphragm of each of four bred-for-research beagle dogs were measured by the radiopaque marker technique during the following maneuvers: a passive deflation maneuver from total lung capacity to functional residual capacity, quiet breathing, and forceful inspiratory efforts against an occluded airway at different lung volumes. Shortening per liter increase in lung volume was, on average, 70% greater during quiet breathing than during passive inflation in the prone posture and 40% greater in the supine posture. For the prone posture, the ratio of active to passive shortening was larger in the ventral and midcostal diaphragm than at the dorsal end of the costal diaphragm. For both postures, active shortening during quiet breathing was poorly correlated with passive shortening. However, shortening during forceful inspiratory efforts was highly correlated with passive shortening. The average ratios of active to passive shortening were 1.23 +/- 0.02 and 1.32 +/- 0.03 for the prone and supine postures, respectively. These data, taken together with the data reported in the companion paper (T. A. Wilson, M. Angelillo, A. Legrand, and A. De Troyer, J. Appl. Physiol. 87: 554-560, 1999), support the hypothesis that, during forceful inspiratory efforts, the inspiratory muscles drive the chest wall along the minimal-work trajectory.  相似文献   

6.
When skeletal muscles are activated and mechanically shortened, the force that is produced by the muscle fibers decreases in two phases, marked by two changes in slope (P1 and P2) that happen at specific lengths (L1 and L2). We tested the hypothesis that these force transients are determined by the amount of myosin cross-bridges attached to actin and by changes in cross-bridge strain due to a changing fraction of cross-bridges in the pre-power-stroke state. Three separate experiments were performed, using skinned muscle fibers that were isolated and subsequently (i) activated at different Ca2+ concentrations (pCa2+ 4.5, 5.0, 5.5, 6.0) (n = 13), (ii) activated in the presence of blebbistatin (n = 16), and (iii) activated in the presence of blebbistatin at varying velocities (n = 5). In all experiments, a ramp shortening was imposed (amplitude 10%Lo, velocity 1 Lo•sarcomere length (SL)•s−1), from an initial SL of 2.5 µm (except by the third group, in which velocities ranged from 0.125 to 2.0 Lo•s−1). The values of P1, P2, L1, and L2 did not change with Ca2+ concentrations. Blebbistatin decreased P1, and it did not alter P2, L1, and L2. We developed a mathematical cross-bridge model comprising a load-dependent power-stroke transition and a pre-power-stroke cross-bridge state. The P1 and P2 critical points as well as the critical lengths L1 and L2 were explained qualitatively by the model, and the effects of blebbistatin inhibition on P1 were also predicted. Furthermore, the results of the model suggest that the mechanism by which blebbistatin inhibits force is by interfering with the closing of the myosin upper binding cleft, biasing cross-bridges into a pre-power-stroke state.  相似文献   

7.
8.
The effect of phenylephrine (30 micron) in the presence of propranolol (1 micron) on electrically induced isometric twitches and on KCl-contractures was studied in papillary muscles from reserpine-pretreated cats at 25 degrees C. Under these conditions phenylephrine has previously been shown to act solely via alpha-adrenoceptors and not to increase c-AMP. Phenylephrine increased force of contraction, time to peak tension and relaxation time. Contracture tension remained unaffected. These data indicate that the stimulation of cardiac alpha-adrenoceptors, in contrast to beta-adrenergic stimulation, does not lead to so-called relaxant effects. This qualitative difference between the two responses is probably due to the different capacity of both stimuli to increase c-AMP.  相似文献   

9.
10.
11.
12.
The effects of papaverine and isoproterenol on the isometric twitch and high KCl-induced contractures were compared in papillary muscles from reserpinized cats. Papaverine (10(-5) M) significantly increased developed tension (T), maximal rate of rise of tension (+dT/dt max) and maximal velocity of relaxation (--dT/dt max) in 52.3 +/- 6.1, 74.1 +/- 6.7 and 82.1 +/- 12.1% respectively with respect to control values. Time to peak tension (TTP) and contracture tension decreased in 9.1 +/- 2.0% and 50.9 +/- 5.6% respectively with respect to controls (P less than 0.05). Isoproterenol in a dose (8 X 10(-10) M), that produced an increase in +dT/dt max non significantly different to the one elicited by papaverine (65.6 +/- 9.0%), increased (in % with respect to control values), T in 55.3 +/- 7.3, --dT/mx in 73.8 +/- 13.1 and decreased TTP in 6.6 +/- 1.1 and contracture tension in 40.7 +/- 6.3 (P less than 0.05). The effects of isoproterenol on all the parameters studied were not statistically different from the ones of papaverine. It is concluded that in cat papillary muscles, papaverine has a positive inotropic action and an isoproterenol-like relaxant effect.  相似文献   

13.
14.
Very rapid, small amplitude, ramp-and-hold rotations were imposed on the braced forearms of three normal adult male subjects who were isometrically contracting their elbow extensors. By carefully accounting for inertial and viscoelastic coupling effects in the experimental system it was possible to compute the time course of the muscle-moment evoked by these mechanical perturbations. The muscle-moment responses, and their dependence on rotation amplitude and direction, as well as tonic contraction level, are described. These responses are also compared to the predictions of a simple muscle model which we have proposed previously on the basis of frequency-response tests. The results indicate that: at a given tonic contraction level, triceps may be stiffer in an isometric state than in an oscillatory steady state, and high frequency fluctuations in the myoelectric activity are very ineffective in generating corresponding muscle-force fluctuations.  相似文献   

15.
16.
Canine trachealis muscle will shorten by 70% of resting length when maximally stimulated in vitro. In contrast, trachealis muscle will shorten by only 30-40% when stimulated in vivo. To examine the possibility that an elastic load applied by the tracheal cartilage contributes to the in vivo limitation of shortening, single pairs of sonomicrometry crystals were inserted into the trachealis muscle at the level of the fifth cartilage ring in five dogs. The segment containing the crystals was then excised and mounted on a tension-testing apparatus. Points on the active length-tension curve and the passive length-tension relation of the cartilage only were determined. The preload applied to the muscle before contraction varied from 10 to 40 g (mean 21 +/- 4 g). The afterload applied by the cartilage during trachealis contraction ranged from 13 to 56 g (30 +/- 6 g). The calculated elastic afterloads were substantial and appeared to be sufficient to explain the degree of shortening observed in four of the seven rings; in the remaining three rings, the limitation of shortening was greater than would be expected from the elastic load provided by the cartilage. Additional sources of loading and/or additional mechanisms may contribute to limited in situ shortening. In summary, tracheal cartilage applies a preload and an elastic afterload to the trachealis that are substantial and contribute to the limitation of trachealis muscle shortening in vivo.  相似文献   

17.
The central nervous system employs different strategies to execute specific motor tasks. Because afferent feedback during shortening and lengthening muscle contractions differs, the neural strategy underlying these tasks may be quite distinct. Cortical drive may be adjusted or afferent input regulated. The exact mechanisms are not clear. Here, we examine the control of synaptic transmission across the Ia synapse during shortening and lengthening muscle contractions. Subjects were instructed to maintain isolated activity in a single tibialis anterior (TA) motor unit while muscle length was varied from flexion to extension and back. At a fixed interval after a firing of the active motor unit, a single electrical stimulus was applied to the common peroneal nerve to activate Ia afferents from the TA muscle. We investigated the stimulus-induced change in firing probability of 19 individual low-threshold TA motor units during shortening and lengthening contractions. Any change in firing probability depends on both pre- and postsynaptic mechanisms. In this experiment, motoneuron firing rate was similar during both contraction types. There was no difference in the firing probability between shortening and lengthening contractions (0.23 +/- 0.03 and 0.20 +/- 0.02, respectively). We suggest that there is no contraction type-specific control of Ia input to the motoneurons during shortening and lengthening muscle contractions. Cortical adjustments may have occurred.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号