首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonsense mutant mRNAs are unstable in all eucaryotes tested, a phenomenon termed nonsense-mediated mRNA decay (NMD) or mRNA surveillance. Functions of the seven smg genes are required for mRNA surveillance in Caenorhabditis elegans. In Smg(+) genetic backgrounds, nonsense-mutant mRNAs are unstable, while in Smg(−) backgrounds such mRNAs are stable. Previous work has demonstrated that the elevated level of nonsense-mutant mRNAs in Smg(−) animals can influence the phenotypic effects of heterozygous nonsense mutations. Certain nonsense alleles of a muscle myosin heavy chain gene are recessive in Smg(+) backgrounds but strongly dominant in Smg(−) backgrounds. Such alleles probably express disruptive myosin polypeptide fragments whose abundance is elevated in smg mutants due to elevation of mRNA levels. We report here that mutations in a variety of C. elegans genes are strongly dominant in Smg(−), but recessive or only weakly dominant in Smg(+) backgrounds. We isolated 32 dominant visible mutations in a Smg(−) genetic background and tested whether their dominance requires a functional NMD system. The dominance of 21 of these mutations is influenced by NMD. We demonstrate, furthermore, that in the case of myosin, the dominant-negative effects of nonsense alleles are likely to be due to expression of N-terminal nonsense-fragment polypeptides, not to mistranslation of the nonsense codons. mRNA surveillance, therefore, may mitigate potentially deleterious effects of many heterozygous germline and somatic nonsense or frameshift mutations. We also provide evidence that smg-6, a gene previously identified as being required for NMD, performs essential function(s) in addition to its role in NMD. Received: 10 June 1998 / Accepted: 21 July 1998  相似文献   

2.
3.
4.
5.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs containing premature translation termination codons. In mammalian cells, a termination codon is ordinarily recognized as "premature" if it is located greater than 50-54 nucleotides 5' to the final exon-exon junction. We have described a set of naturally occurring human beta-globin gene mutations that apparently contradict this rule. The corresponding beta-thalassemia genes contain nonsense mutations within exon 1, and yet their encoded mRNAs accumulate to levels approaching wild-type beta-globin (beta(WT)) mRNA. In the present report we demonstrate that the stabilities of these mRNAs with nonsense mutations in exon 1 are intermediate between beta(WT) mRNA and beta-globin mRNA carrying a prototype NMD-sensitive mutation in exon 2 (codon 39 nonsense; beta 39). Functional analyses of these mRNAs with 5'-proximal nonsense mutations demonstrate that their relative resistance to NMD does not reflect abnormal RNA splicing or translation re-initiation and is independent of promoter identity and erythroid specificity. Instead, the proximity of the nonsense codon to the translation initiation AUG constitutes a major determinant of NMD. Positioning a termination mutation at the 5' terminus of the coding region blunts mRNA destabilization, and this effect is dominant to the "50-54 nt boundary rule." These observations impact on current models of NMD.  相似文献   

6.
The nonsense mediated decay (NMD) pathway degrades mRNAs bearing premature translation termination codons. In mammals, SMG-8 has been implicated in the NMD pathway, in part by its association with SMG-1 kinase. Here we use four independent assays to show that C. elegans smg-8 is not required to degrade nonsense-containing mRNAs. We examine the genetic requirement for smg-8 to destabilize the endogenous, natural NMD targets produced by alternative splicing of rpl-7a and rpl-12. We test smg-8 for degradation of the endogenous, NMD target generated by unc-54(r293), which lacks a normal polyadenylation site. We probe the effect of smg-8 on the exogenous NMD target produced by myo-3::GFP, which carries a long 3′ untranslated region that destabilizes mRNAs. None of these known NMD targets is influenced by smg-8 mutations. In addition, smg-8 animals lack classical Smg mutant phenotypes such as a reduced brood size or abnormal vulva. We conclude that smg-8 is unlikely to encode a component critical for NMD.  相似文献   

7.
Non-sense-mediated mRNA decay (NMD) is a mechanism of translation-dependent mRNA surveillance in eukaryotes: it degrades mRNAs with premature termination codons (PTCs) and contributes to cellular homeostasis by downregulating a number of physiologically important mRNAs. In the NMD pathway, Upf proteins, a set of conserved factors of which Upf1 is the central regulator, recruit decay enzymes to promote RNA cleavage. In mammals, the degradation of PTC-containing mRNAs is triggered by the exon–junction complex (EJC) through binding of its constituents Upf2 and Upf3 to Upf1. The complex formed eventually induces translational repression and recruitment of decay enzymes. Mechanisms by which physiological mRNAs are targeted by the NMD machinery in the absence of an EJC have been described but still are discussed controversially. Here, we report that the DEAD box proteins Ddx5/p68 and its paralog Ddx17/p72 also bind the Upf complex by physical interaction with Upf3, thereby interfering with the binding of EJC. By activating the NMD machinery, Ddx5 is shown to regulate the expression of its own, Ddx17 and Smg5 mRNAs. For NMD triggering, the adenosine triphosphate-binding activity of Ddx5 and the 3′-untranslated region of substrate mRNAs are essential.  相似文献   

8.
9.
10.
The tra-1 gene is the terminal regulator in the sex determination pathway in C. elegans, directing all aspects of somatic sexual differentiation. Recessive loss-of-function (If) mutations in tra-1 masculinize XX animals (normally somatically female), while dominant gain-of-function mutations feminize XO animals (normally male). Most tra-1(If) mutations can be fitted into a simple allelic series of somatic masculinization, but a small number of If alleles do not fit into this series. Here we show that three of these mutations are associated with DNA rearrangements 5′ to the coding region. One allele is an inversion that may be subject to a position effect. We also report the isolation of a new class of tra-1 alleles that are responsive to mutations in the smg system of RNA surveillance. We show that two of these express RNAs of aberrant size. We suggest that the smg-sensitive mutations may identify a carboxy-terminal domain required for negative regulation of tra-1 activity. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The degradation of nonsense-mutated β-globin mRNA by nonsense-mediated mRNA decay (NMD) limits the synthesis of C-terminally truncated dominant negative β-globin chains and thus protects the majority of heterozygotes from symptomatic β-thalassemia. β-globin mRNAs with nonsense mutations in the first exon are known to bypass NMD, although current mechanistic models predict that such mutations should activate NMD. A systematic analysis of this enigma reveals that (1) β-globin exon 1 is bisected by a sharp border that separates NMD-activating from NMD-bypassing nonsense mutations and (2) the ability to bypass NMD depends on the ability to reinitiate translation at a downstream start codon. The data presented here thus reconcile the current mechanistic understanding of NMD with the observed failure of a class of nonsense mutations to activate this important mRNA quality-control pathway. Furthermore, our data uncover a reason why the position of a nonsense mutation alone does not suffice to predict the fate of the affected mRNA and its effect on protein expression.  相似文献   

12.
ABSTRACT: BACKGROUND: Nonsense mutations are at the origin of many cancers and inherited genetic diseases. The consequence of nonsense mutations is often the absence of mutant gene expression due to the activation of an mRNA surveillance mechanism called nonsense-mediated mRNA decay (NMD). Strategies to rescue the expression of nonsense-containing mRNAs have been developed such as NMD inhibition or nonsense mutation readthrough. METHODS: Using a dedicated screening system, we sought molecules capable to block NMD. Additionally, 3 cell lines derived from patient cells and harboring a nonsense mutation were used to study the effect of the selected molecule on the level of nonsense-containing mRNAs and the synthesis of proteins from these mutant mRNAs. RESULTS: We demonstrate here that amlexanox, a drug used for decades, not only induces an increase in nonsense-containing mRNAs amount in treated cells, but also leads to the synthesis of the full-length protein in an efficient manner. We also demonstrated that these full length proteins are functional. CONCLUSIONS: As a result of this dual activity, amlexanox may be useful as a therapeutic approach for diseases caused by nonsense mutations.  相似文献   

13.
A new function for nonsense-mediated mRNA-decay factors   总被引:10,自引:0,他引:10  
mRNAs often contain premature-termination (nonsense) codons as a result of mutations and RNA splicing errors. These nonsense codons cause rapid decay of the mRNAs that contain them, a phenomenon called nonsense-mediated mRNA decay (NMD). This response is thought to be a quality-control mechanism that protects cells from truncated dominant-negative proteins. Surprisingly, recent evidence strongly suggests that the NMD factors UPF1, UPF2, UPF3B, RNPS1, Y14 and MAGOH also promote translation of normal mRNAs in mammalian cells. This, along with an earlier discovery that NMD factors appear to dictate efficient translation termination, suggests that NMD factors do not merely function in RNA surveillance. These findings lead to the interesting question of why NMD factors evolved; are they for RNA-quality control or to promote efficient translation initiation and termination?  相似文献   

14.
Chen Z  Smith KR  Batterham P  Robin C 《Genetics》2005,171(1):403-406
Smg1 is a key component of nonsense-mediated decay (NMD) in Caenorhabditis elegans and mammals. Here we report that two nonsense alleles of the ortholog of Smg1 do not affect NMD in Drosophila melanogaster.  相似文献   

15.
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.  相似文献   

16.
The nonsense-mediated mRNA decay (NMD) system is an RNA surveillance system that degrades mRNAs possessing premature translation termination codons (PTCs). Although NMD factors are well conserved in eukaryotes, it is speculated that the contexts of those termination codons that are subject to NMD are different depending on the organism. Context analysis of termination codons that are recognized by the plant NMD system would clarify NMD target mRNAs in plants, and contribute to our understanding of its biological relevance in plants. In the present study we analyzed the positions of termination codons that were recognized as PTCs using an Agrobacterium transient expression assay, i.e. the accumulation of a series of plant mRNAs with nonsense mutations in different contexts was tested in plants. The results indicated that termination codons that are located distant from the mRNA 3' termini or >50 nucleotides upstream of the 3'-most exon-exon junction are recognized as substrates for NMD.  相似文献   

17.
Cao D  Parker R 《Cell》2003,113(4):533-545
  相似文献   

18.
Nonsense‐mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs harboring premature termination codons (PTCs). We have conducted a genome‐wide RNAi screen in Caenorhabditis elegans that resulted in the identification of five novel NMD genes that are conserved throughout evolution. Two of their human homologs, GNL2 (ngp‐1) and SEC13 (npp‐20), are also required for NMD in human cells. We also show that the C. elegans gene noah‐2, which is present in Drosophila melanogaster but absent in humans, is an NMD factor in fruit flies. Altogether, these data identify novel NMD factors that are conserved throughout evolution, highlighting the complexity of the NMD pathway and suggesting that yet uncovered novel factors may act to regulate this process.  相似文献   

19.
20.
One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号