首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以已知的尿苷二磷酸葡萄糖脱氢酶基因的保守区为基础,自行设计一对简并引物,该对引物从形成水华的蓝藻(Synechocystis PCC6803)铜绿微囊藻FACHB 905株(Microcystis aeruginosa FACHB 905)的基因组DNA中扩增到一个476 bp的DNA片段.通过TAIL-PCR和连接介导的PCR两种方法分离该片段的侧翼序列,最后得到大小约2.5 kb的DNA片段.序列分析揭示其中有一个编码462个氨基酸的开放阅读框,我们将此开放阅读框对应的蛋白命名为Mud.该Mud蛋白的氨基酸序列与蓝藻(73%相同,87%相似)和细菌(Bacillus subtilis)(51%相同,67%相似)的尿苷二磷酸葡萄糖脱氢酶氨基酸序列表现高度的同源性.将该mud基因克隆于p-GEX-4T-1融合表达载体并在大肠杆菌中表达GST-Mud融合蛋白,经过酶活力测定发现,GST-Mud蛋白具有一定的尿苷二磷酸葡萄糖脱氢酶活性.用抗GST-Mud蛋白的多抗对M.aeruginosa FACHB 905的胞质蛋白组分进行Western印迹分析,结果显示一条分子量大小约49 kD的专一条带,这个分子量与从基因推断出的蛋白分子量大小基本一致.综上所述,我们认为从微囊藻克隆到的Mud蛋白基因是尿苷二磷酸葡萄糖脱氢酶基因,该酶在其他生物如植物和细菌中参与多糖合成,是多糖合成的关键酶之一,而在藻类中对尿苷二磷酸葡萄糖脱氢酶开展研究却是首次报道.  相似文献   

2.
Kärkönen A  Fry SC 《Planta》2006,223(4):858-870
UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K m (for UDP-glucose) 0.5–1.0 mM; there was also a minor activity with an unusually high K m of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K m values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes EL, EM and EH respectively). EM was the single major contributor to extractable UDPGDH activity when assayed at 0.6–9.0 mM UDP-Glc. Most studies, in other plant species, had reported only EL-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least EH activity is not due to ADH. At 30 μM UDP-glucose, 20–150 μM UDP-xylose inhibited UDPGDH activity, whereas 5–15 μM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities.  相似文献   

3.
4.
UDP-glucose dehydrogenase (UDPGDH) was extracted and partially purified from different rat tissues and the kinetic parameters and some properties of the enzyme were determined and compared. The pH optimum ranged between 8.6 and 9.4 for liver and kidney UDPGDH and between 8.4 and 8.6 for skin and lung UDPGDH. Liver and kidney enzymes showed a similar affinity for both UDPG and NAD. Lung and skin enzymes also showed similar affinity for both substrates, which differed however from that of liver and kidney UDPGDH. Both liver and kidney enzymes had a higher heat stability and a different electrophoretic mobility compared to skin and lung UDPGDH. These data suggest the existence of different tissue specific forms of the enzyme.  相似文献   

5.
The primary structure of bovine liver UDP-glucose dehydrogenase (UDPGDH), a hexameric, NAD(+)-linked enzyme, has been determined at the protein level. The 52-kDa subunits are composed of 468 amino acid residues, with a free N-terminus and a Ser/Asn microhetergeneity at one position. The sequence shares 29.6% positional identity with GDP-mannose dehydrogenase from Pseudomonas, confirming a similarity earlier noted between active site peptides. This degree of similarity is comparable to the 31.1% identity vs. the UDPGDH from type A Streptococcus. Database searching also revealed similarities to a hypothetical sequence from Salmonella typhimurium and to "UDP-N-acetyl-mannosaminuronic acid dehydrogenase" from Escherichia coli. Pairwise identities between bovine UDPGDH and each of these sequences were all in the range of approximately 26-34%. Multiple alignment of all 5 sequences indicates common ancestry for these 4-electron-transferring enzymes. There are 27 strictly conserved residues, including a cysteine residue at position 275, earlier identified by chemical modification as the expected catalytic residue of the second half-reaction (conversion of UDP-aldehydoglucose to UDP-glucuronic acid), and 2 lysine residues, at positions 219 and 338, one of which may be the expected catalytic residue for the first half-reaction (conversion of UDP-glucose to UDP-aldehydoglucose). A GXGXXG pattern characteristic of the coenzyme-binding fold is found at positions 11-16, close to the N-terminus as with "short-chain" alcohol dehydrogenases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
Sphingomonas elodea ATCC 31461 synthesizes in high yield the exopolysaccharide gellan, which is a water-soluble gelling agent with many applications. In this study, we describe the cloning and sequence analysis of the ugdG gene, encoding a UDP-glucose dehydrogenase (47.2 kDa; UDPG-DH; EC 1.1.1.22), required for the synthesis of the gellan gum precursor UDP-glucuronic acid. UgdG protein shows homology to members of the UDP-glucose/GDP-mannose dehydrogenase superfamily. The Neighbor-Joining method was used to determine phylogenetic relationships among prokaryotic and eukaryotic UDPG-DHs. UgdG from S. elodea and UDPG-DHs from Novosphingobium, Zymomonas, Agrobacterium, and Caulobacter species form a divergent phylogenetic group with a close evolutionary relationship with eukaryotic UDPG-DHs. The ugdG gene was recombinantly expressed in Escherichia coli with and N-terminal 6-His tag and purified for biochemical characterization. The enzyme has an optimum temperature and pH of 37°C and 8.7, respectively. The estimated apparent K m values for UDP-glucose and NAD+ were 0.87 and 0.4 mM, respectively. DNA sequencing of chromosomal regions adjacent to ugdG gene and sequence similarity studies suggests that this gene maps together with others presumably involved in the biosynthesis of S. elodea cell wall polysaccharides.  相似文献   

9.
The gene cluster of Streptococcus pneumoniae coding for the type 3 capsular polysaccharide contains four genes (cap3ABCD). A DNA fragment containing the cap3A gene was amplified by PCR and cloned under the control of a T7 RNA polymerase-dependent promoter. Overexpression of this gene in Escherichia coli resulted both in a 47-kDa protein in the cytoplasm of isopropyl-beta-D-thiogalactopyranoside-induced bacteria and in high levels of UDP-glucose dehydrogenase activity. These data demonstrate, in a direct experimental way, that cap3A encodes the UDP-glucose dehydrogenase of pneumococcus type 3.  相似文献   

10.
Glycosaminoglycans (GAGs) play a central role in embryonic development by regulating the movement and signaling of morphogens. We have previously demonstrated that GAGs are the co-receptors for Fgf10 signaling in the lacrimal gland epithelium, but their function in the Fgf10-producing periocular mesenchyme is still poorly understood. In this study, we have generated a mesenchymal ablation of UDP-glucose dehydrogenase (Ugdh), an essential biosynthetic enzyme for GAGs. Although Fgf10 RNA is expressed normally in the periocular mesenchyme, Ugdh mutation leads to excessive dispersion of Fgf10 protein, which fails to elicit an FGF signaling response or budding morphogenesis in the presumptive lacrimal gland epithelium. This is supported by genetic rescue experiments in which the Ugdh lacrimal gland defect is ameliorated by constitutive Ras activation in the epithelium but not in the mesenchyme. We further show that lacrimal gland development requires the mesenchymal expression of the heparan sulfate N-sulfation genes Ndst1 and Ndst2 but not the 6-O and 2-O-sulfation genes Hs6st1, Hs6st2 and Hs2st. Taken together, these results demonstrate that mesenchymal GAG controls lacrimal gland induction by restricting the diffusion of Fgf10.  相似文献   

11.
12.
13.
透明质酸是链球菌荚膜的主要组成部分,有着重要的生理功能。UDP-葡萄糖脱氢酶(HasB)是透明质酸合成中的一个关键酶,而C类链球菌的UDP-葡萄糖脱氢酶编码基因(hasB)尚未被克隆。通过hasB基因的上下游序列设计引物从兽疫链球茵的基因组中克隆出一段序列,测序结果显示其包含一个由1206个碱基组成的开放阅读框,所编码的蛋白序列同化脓链球菌和乳链球菌的UDP-葡萄糖脱氢酶蛋白序列分别有63.1%和70.6%的相似性。将这段基因置于T7启动子下,并在大肠杆菌中进行表达,能够得到一个约47kDa的蛋白,酶活测定显示其具有UDP-葡萄糖脱氢酶活性。这些结果表明所克隆的基因是兽疫链球菌的UDP-葡萄糖脱氢酶编码基因。  相似文献   

14.
15.
16.
李颢  王玲燕  徐桂云  陈阳  姜蓉  李元 《遗传学报》2005,32(11):1213-1220
链霉菌139能够产生一种全新的胞外多糖——依博素(139A),该多糖体内具有显著抗类风湿性关节炎活性。其生物合成基因簇(GenBank Accession Number:AYl31229)已被鉴定约31.3kb,包含22个开放阅读框(ste1—ste22)。以pET-30a为载体,克隆并在大肠杆菌BL21(DE3)中进行了ste6基因的表达,对该基因的克隆、表达与性质进行了研究。亲和层析法证实,纯化后重组蛋白具有催化UDP-葡萄糖脱氢变成UDP-葡萄糖醛酸的活性。这表明ste6编码产物是葡萄糖脱氢酶。为了证实ste6基因与依博素生物合成的关系,采用单交换基因破坏策略构建了ste6基因阻断突变株。结果初步显示ste6和依博素生物合成相关。  相似文献   

17.
18.
19.
20.
We report the molecular cloning of a chromosome segment including the white locus of Drosophila melanogaster. This region was isolated using a deficiency extending from the previously cloned heat-shock puff sequences at 87A7 to a large transposable element containing the loci white and roughest.FB-NOF, a 7.5 kb element with partial homology to a family of inverted repeat sequences (Potter et al., 1980), is found very near the deficiency breakpoint, and is followed by DNA originating from the white locus region. Sequences totalling ˜60 kb surrounding this initial entry point were obtained by the cloning of successively overlapping fragments from a wild-type strain. Several rearrangement breakpoints have been mapped relative to the cloned DNA; these define the limits of the white locus and further differentiate the “white proximal region”, thought to function in gene regulation, from the remainder of the locus. Insertion of the dispersed repetitive element copia into the white locus is observed in strains carrying the white-apricot allele. Analysis of several white-apricot revertants suggests that copia insertion is responsible for the apricot eye color phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号