首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the proteins whose synthesis and/or degradation is necessary for a proper progression through meiotic maturation, cyclin B appears to be one of the most important. Here, we attempted to modulate the level of cyclin B1 and B2 synthesis during meiotic maturation of the mouse oocyte. We used cyclin B1 or B2 mRNAs with poly(A) tails of different sizes and cyclin B1 or B2 antisense RNAs. Oocytes microinjected with cyclin B1 mRNA showed two phenotypes: most were blocked in MI, while the others extruded the first polar body in advance when compared to controls. Moreover, these effects were correlated with the length of the poly(A) tail. Thus it seems that the rate of cyclin B1 translation controls the timing of the first meiotic M phase and the transition to anaphase I. Moreover, overexpression of cyclin B1 or B2 was able to bypass the dbcAMP-induced germinal vesicle block, but only the cyclin B1 mRNA-microinjected oocytes did not extrude their first polar body. Oocytes injected with the cyclin B1 antisense progressed through the first meiotic M phase but extruded the first polar body in advance and were unable to enter metaphase II. This suggested that inhibition of cyclin B1 synthesis only took place at the end of the first meiotic M phase, most likely because the cyclin B1 mRNA was protected. The injection of cyclin B2 antisense RNA had no effect. The life observation of the synthesis and degradation of a cyclin B1-GFP chimera during meiotic maturation of the mouse oocyte demonstrated that degradation can only occur during a given period of time once it has started. Taken together, our data demonstrate that the rates of cyclin B synthesis and degradation determine the timing of the major events taking place during meiotic maturation of the mouse oocyte.  相似文献   

2.
Meiosis is a highly specialized cell division that requires significant reorganization of the canonical cell-cycle machinery and the use of meiosis-specific cell-cycle regulators. The anaphase-promoting complex (APC) and a conserved APC adaptor, Cdc20 (also known as Fzy), are required for anaphase progression in mitotic cells. The APC has also been implicated in meiosis, although it is not yet understood how it mediates these non-canonical divisions. Cortex (Cort) is a diverged Fzy homologue that is expressed in the female germline of Drosophila, where it functions with the Cdk1-interacting protein Cks30A to drive anaphase in meiosis II. Here, we show that Cort functions together with the canonical mitotic APC adaptor Fzy to target the three mitotic cyclins (A, B and B3) for destruction in the egg and drive anaphase progression in both meiotic divisions. In addition to controlling cyclin destruction globally in the egg, Cort and Fzy appear to both be required for the local destruction of cyclin B on spindles. We find that cyclin B associates with spindle microtubules throughout meiosis I and meiosis II, and dissociates from the meiotic spindle in anaphase II. Fzy and Cort are required for this loss of cyclin B from the meiotic spindle. Our results lead to a model in which the germline-specific APC(Cort) cooperates with the more general APC(Fzy), both locally on the meiotic spindle and globally in the egg cytoplasm, to target cyclins for destruction and drive progression through the two meiotic divisions.  相似文献   

3.
Oogenesis in the urochordate, Oikopleura dioica, occurs in a large coenocyst in which vitellogenesis precedes oocyte selection in order to adapt oocyte production to nutrient conditions. The animal has expanded Cyclin-Dependant Kinase 1 (CDK1) and Cyclin B paralog complements, with several expressed during oogenesis. Here, we addressed functional redundancy and specialization of CDK1 and cyclin B paralogs during oogenesis and early embryogenesis through spatiotemporal analyses and knockdown assays. CDK1a translocated from organizing centres (OCs) to selected meiotic nuclei at the beginning of the P4 phase of oogenesis, and its knockdown impaired vitellogenesis, nurse nuclear dumping, and entry of nurse nuclei into apoptosis. CDK1d-Cyclin Ba translocated from OCs to selected meiotic nuclei in P4, drove meiosis resumption and promoted nuclear envelope breakdown (NEBD). CDK1d-Cyclin Ba was also involved in histone H3S28 phosphorylation on centromeres and meiotic spindle assembly through regulating Aurora B localization to centromeres during prometaphase I. In other studied species, Cyclin B3 commonly promotes anaphase entry, but we found O. dioica Cyclin B3a to be non-essential for anaphase entry during oogenic meiosis. Instead, Cyclin B3a contributed to meiotic spindle assembly though its loss could be compensated by Cyclin Ba.  相似文献   

4.
Mus musculus cyclin B3 is an early meiotic cyclin that is expressed in leptotene and zygotene phases during gametogenesis. In order to determine whether downregulation of cyclin B3 at zygotene-pachytene transition was important for normal spermatogenesis, we investigated the consequences of expressing H. sapiens cyclin B3 after zygotene in mouse testes. Prolonging expression of cyclin B3 until the end of meiosis led to a reduction in sperm counts and disruption of spermatogenesis in four independent lines of transgenic mice. There were three distinct morphological defects associated with the ectopic expression of cyclin B3. Seminiferous tubules were either depleted of germ cells, had an abnormal cell mass in the lumen, or were characterized by the presence of abnormal round spermatids. These defects were associated with increased apoptosis in the testes. These results suggest that downregulation of cyclin B3 at the zygotene-pachytene transition is required to ensure normal spermatogenesis.  相似文献   

5.
We cloned cyclin B1, B2, and B3 cDNAs from the eel testis. Northern blot analysis indicated that these cyclin B mRNAs were expressed and increased from day 3 onward after the hormonal induction of spermatogenesis, and that cyclin B3 was most dominantly expressed during spermatogenesis. In situ hybridization showed that cyclin B1 and B2 were present from the spermatogonium stage to the spermatocyte stage. On the other hand, cyclin B3 mRNA was present only in spermatogonia. Although mouse cyclin B3 is expressed specifically in the early meiotic prophase, these results indicate that eel cyclin B3 expression is limited during spermatogenesis to spermatogonia, but is not present in spermatocytes. These facts together suggest that eel cyclin B3 is specifically involved in spermatogonial proliferation (mitosis), but not in meiosis.  相似文献   

6.
The role of cyclin B in meiosis I   总被引:60,自引:15,他引:45       下载免费PDF全文
In clams, fertilization is followed by the prominent synthesis of two cyclins, A and B. During the mitotic cell cycles, the two cyclins are accumulated and then destroyed near the end of each metaphase. Newly synthesized cyclin B is complexed with a small set of other proteins, including a kinase that phosphorylates cyclin B in vitro. While both cyclins can act as general inducers of entry into M phase, the two are clearly distinguished by their amino acid sequences (70% nonidentity) and by their different modes of expression in oocytes and during meiosis. In contrast to cyclin A, which is stored solely as maternal mRNA, oocytes contain a stockpile of cyclin B protein, which is stored in large, rapidly sedimenting aggregates. Fertilization results in the release of cyclin B to a more disperse, soluble form. Since the first meiotic division in clams can proceed even when new protein synthesis is blocked, these results strongly suggest it is the fertilization-triggered unmasking of cyclin B protein that drives cells into meiosis I. We propose that the unmasking of maternal cyclin B protein allows it to interact with cdc2 protein kinase, which is also stored in oocytes, and that the formation of this cyclin B/cdc2 complex generates active M phase-promoting factor.  相似文献   

7.
Timely progression into mitosis is necessary for normal cell division. This transition is sensitive to the levels of cyclin B, the regulatory subunit of the master mitotic kinase, Cdk1. Cyclin B accumulates during G2 and prophase when its rate of destruction by the anaphase promoting complex (APC) is low. Securin is also an APC substrate and is known for its role in inactivating the cohesin-cleaving enzyme, separase, until the metaphase to anaphase transition. Here we show that securin has an additional role in cell-cycle regulation, that of modulating the timing of entry into M-phase. In mouse oocytes, excess securin caused stabilization of cyclin B and precocious entry into M-phase. Depletion of securin increased cyclin B degradation, resulting in delayed progression into M-phase. This effect required APC activity and was reversed by expression of wild-type securin. These data reveal a role for securin at the G2-M transition and suggest a more general mechanism whereby physiological levels of co-competing APC substrates function in modulating the timing of cell-cycle transitions.  相似文献   

8.
CDK1-cyclin B1 is a universal cell cycle kinase required for mitotic/meiotic cell cycle entry and its activity needs to decline for mitotic/meiotic exit. During their maturation, mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-cyclin B1 activity. Meiotic arrest is achieved by the action of a cytostatic factor (CSF), which reduces cyclin B1 degradation. Meiotic arrest is broken by a Ca2+ signal from the sperm that accelerates it. Here we visualised degradation of cyclin B1::GFP in oocytes and found that its degradation rate was the same for both meiotic divisions. Ca2+ was the necessary and sufficient trigger for cyclin B1 destruction during meiosis II; but it played no role during meiosis I and furthermore could not accelerate cyclin B1 destruction during this time. The ability of Ca2+ to trigger cyclin B1 destruction developed in oocytes following a restabilisation of cyclin B1 levels at about 12 h of culture. This was independent of actual first polar body extrusion. Thus, in metaphase I arrested oocytes, Ca2+ would induce cyclin B1 destruction and the first polar body would be extruded. In contrast to some reports in lower species, we found no evidence that oocyte activation was associated with an increase in 26S proteasome activity. We therefore conclude that Ca2+ mediates cyclin B1 degradation by increasing the activity of an E3 ubiquitin ligase. However, this stimulation occurs only in the presence of the ubiquitin ligase inhibitor CSF. We propose a model in which Ca2+ directly stimulates destruction of CSF during mammalian fertilisation.  相似文献   

9.
10.
Identification of the cyclin D1b mRNA variant in mouse   总被引:1,自引:0,他引:1  
  相似文献   

11.
Using subtractive hybridization and polymerase chain reaction, we developed a differential cloning system, the fragmented cDNA subtraction method, that requires only small amounts of materials. The cloning system was used to isolate several cDNA fragments expressed more abundantly in the premeiotic day 3 post-natal mouse testis than in the adult mouse testis. The isolated cDNA fragments included cDNA encoding the murine cyclin D2. Northern blot and in situ hybridization analyses revealed that, during testis development, cyclin D2 expression was most abundant in the neonatal proliferating Sertoli cells. Those type A spermatogonia that were thought to divide mitotically also expressed cyclin D2 mRNA. Other spermatogenic cells, such as mitotically arrested gonocytes in neonatal testis and meiotically dividing germ cells in adult testis as well as adult Sertoli cells, were negative for the cyclin D2 signal. Adult W/W v mutant mice lacking germ cells expressed cyclin D2 mRNA in terminally differentiated Sertoli cells. Elimination of germ cells other than the undifferentiated type A spermatogonia by treating wild-type mice with an anti-c- kit monoclonal antibody did not result in the expression of cyclin D2 in Sertoli cells. These results demonstrate that there are lineage- and developmental-specific expression patterns of cyclin D2 mRNA during mouse testis development. At the same time, it is suggested that primitive type A spermatogonia affect the cyclin D2 expression of Sertoli cells.  相似文献   

12.
13.
Sister chromatid separation and cyclin degradation in mitosis depend on the association of the anaphase-promoting complex (APC) with the Fizzy protein (Cdc20), leading to the metaphase/anaphase transition and exit from mitosis [1--3]. In Xenopus, after metaphase of the first meiotic division, only partial cyclin degradation occurs, and chromosome segregation during anaphase I proceeds without sister chromatid separation [4--7]. We investigated the role of xFizzy during meiosis using an antisense depletion approach. xFizzy accumulates to high levels in Meiosis I, and injection of antisense oligonucleotides to xFizzy blocks nearly all APC-mediated cyclin B degradation and Cdc2/cyclin B (MPF) inactivation between Meiosis I and II. However, even without APC activation, xFizzy-ablated oocytes progress to Meiosis II as shown by cyclin E synthesis, further accumulation of cyclin B, and evolution of the metaphase I spindle to a metaphase II spindle via a disc-shaped aggregate of microtubules known to follow anaphase I [8]. Inhibition of the MAPK pathway by U0126 in antisense-injected oocytes prevents cyclin B accumulation beyond the level that is present at metaphase I. Full synthesis and accumulation can be restored in the presence of U0126 by the expression of a constitutively active form of the MAPK target, p90(Rsk). Thus, p90(Rsk) is sufficient not only to partially inhibit APC activity [7], but also to stimulate cyclin B synthesis in Meiosis II.  相似文献   

14.
Summary— We have isolated and characterized a cDNA which contains the entire coding sequence of Xenopus laevis cyclin D2 protein. Cyclin D2 mRNA is identified as a member of the class of maternal RNAs. It is rare and stable during embryonic development at least until tadepole. In addition, a second cDNA coding for a truneated version of cyclin D2 was also isolated. Mieroinjection of cyclin D2 into oocytes undergoing meiotic maturation and parthenogenetic activation reveals that the protein is stable for several hours, independently of the ubiquitin-mediated degradation of cyclin B2 that takes place periodically during this process. Microinjected cyclin D2 localizes both in the cytoplasm and in the nucleus of oocyte. In somatic cells, it is well established that cyclin D2 is almost exclusively nuclear and very labile. The unusual behaviour of cyclin D2 upon injection into oocytes may provide indications about a possible role for this protein during meiosis and early development.  相似文献   

15.
W Liu  J Yin  G Zhao  Y Yun  S Wu  KT Jones  A Lei 《Theriogenology》2012,78(6):1171-1181
During mammalian oocyte maturation, two consecutive meiotic divisions are required to form a haploid gamete. For each meiotic division, oocytes must transfer from metaphase to anaphase, but maturation promoting factor (cyclin-dependent kinase 1/cyclin B1) activity would keep the oocytes at metaphase. Therefore, inactivation of maturation promoting factor is needed to finish the transition and complete both these divisions; this is provided through anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. The objective of this study was to examine meiotic divisions in bovine oocytes after expression of a full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion, coupled with the fluorochrome Venus, by microinjecting their complementary RNA (cRNA). Overexpression of full-length cyclin B1-Venus inhibited homologue disjunction and first polar body formation in maturing oocytes (control 70% vs. overexpression 16%; P < 0.05). However at the same levels of expression, it did not block second meiotic metaphase and cleavage of eggs after parthenogenetic activation (control: 82% pronuclei and 79% cleaved; overexpression: 91% pronuclei and 89% cleaved). The full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion caused metaphase arrest in both meiotic divisions, whereas degradation of securin was unaffected. Roscovitine, a potent cyclin-dependent kinase 1 (CDK1) inhibitor, overcame this metaphase arrest in maturing oocytes at 140 μM, but higher doses (200 μM) were needed to overcome arrest in eggs. In conclusion, because metaphase I (MI) blocked by nondegradable cyclin B1 was distinct from metaphase II (MII) in their different sensitivities to trigger CDK1 inactivation, we concluded that mechanisms of MI arrest differed from MII arrest.  相似文献   

16.
Translational control is prominent during meiotic maturation and early development. In this report, we investigate a mode of translational repression in Xenopus laevis oocytes, focusing on the mRNA encoding cyclin B1. Translation of cyclin B1 mRNA is relatively inactive in the oocyte and increases dramatically during meiotic maturation. We show, by injection of synthetic mRNAs, that the cis-acting sequences responsible for repression of cyclin B1 mRNA reside within its 3'UTR. Repression can be saturated by increasing the concentration of reporter mRNA injected, suggesting that the cyclin B1 3'UTR sequences provide a binding site for a trans-acting repressor. The sequences that direct repression overlap and include cytoplasmic polyadenylation elements (CPEs), sequences known to promote cytoplasmic polyadenylation. However, the presence of a CPE per se appears insufficient to cause repression, as other mRNAs that contain CPEs are not translationally repressed. We demonstrate that relief of repression and cytoplasmic polyadenylation are intimately linked. Repressing elements do not override the stimulatory effect of a long poly(A) tail, and polyadenylation of cyclin B1 mRNA is required for its translational recruitment. Our results suggest that translational recruitment of endogenous cyclin B1 mRNA is a collaborative effect of derepression and poly(A) addition. We discuss several molecular mechanisms that might underlie this collaboration.  相似文献   

17.
Type 1 and type 2 diabetes result from a deficit in insulin production and beta-cell mass. Methods to expand beta-cell mass are under intensive investigation for the treatment of type 1 and type 2 diabetes. We tested the hypothesis that cholecystokinin (CCK) can promote beta-cell proliferation. We treated isolated mouse and human islets with an adenovirus containing the CCK cDNA (AdCMV-CCK). We measured [(3)H]thymidine and BrdU incorporation into DNA and additionally, performed flow cytometry analysis to determine whether CCK overexpression stimulates beta-cell proliferation. We studied islet function by measuring glucose-stimulated insulin secretion and investigated the cell cycle regulation of proliferating beta-cells by quantitative RT-PCR and Western blot analysis. Overexpression of CCK stimulated [(3)H]thymidine incorporation into DNA 5.0-fold and 15.8-fold in mouse and human islets, respectively. AdCMV-CCK treatment also stimulated BrdU incorporation into DNA 10-fold and 21-fold in mouse and human beta-cells, respectively. Glucose-stimulated insulin secretion was unaffected by CCK expression. Analysis of cyclin and cdk mRNA and protein abundance revealed that CCK overexpression increased cyclin A, cyclin B, cyclin E, cdk1, and cdk2 with no change in cyclin D1, cyclin D2, cyclin D3, cdk4, or cdk6 in mouse and human islets. Additionally, AdCMV-CCK treatment of CCK receptor knockout and wild-type mice resulted in equal [(3)H]thymidine incorporation. CCK is a beta-cell proliferative factor that is effective in both mouse and human islets. CCK triggers beta-cell proliferation without disrupting islet function, up-regulates a distinct set of cell cycle regulators in islets, and signals independently of the CCK receptors.  相似文献   

18.
J Minshull  J J Blow  T Hunt 《Cell》1989,56(6):947-956
The cyclins are a family of proteins encoded by maternal mRNA. Cyclin polypeptides accumulate during interphase and are destroyed during mitosis at about the time of entry into anaphase. We show here that Xenopus oocytes contain mRNAs encoding two cyclins that are major translation products in a cell-free extract from activated eggs. Cutting these mRNAs with antisense oligonucleotides and endogenous RNAase H blocks entry into mitosis in a cell-free egg extract. The extracts can enter mitosis if either of the cyclin mRNAs is left intact. We conclude that the synthesis of these cyclins is necessary for mitotic cell cycles in cleaving Xenopus embryos.  相似文献   

19.
In unfertilized eggs from vertebrates, the cell cycle is arrested in metaphase of the second meiotic division (metaphase II) until fertilization or activation. Maintenance of the long-term meiotic metaphase arrest requires mechanisms preventing the destruction of the maturation promoting factor (MPF) and the migration of the chromosomes. In frog oocytes, arrest in metaphase II (M II) is achieved by cytostatic factor (CSF) that stabilizes MPF, a heterodimer formed of cdc2 kinase and cyclin. At the metaphase/anaphase transition, a rapid proteolysis of cyclin is associated with MPF inactivation. In Drosophila, oocytes are arrested in metaphase I (M I); however, only mechanical forces generated by the chiasmata seem to prevent chromosome separation. Thus, entirely different mechanisms may be involved in the meiotic arrests in various species. We report here that in mouse oocytes a CSF-like activity is involved in the M II arrest (as observed in hybrids composed of fragments of metaphase II-arrested oocytes and activated mitotic mouse oocytes) and that the high activity of MPF is maintained through a continuous equilibrium between cyclin B synthesis and degradation. In addition, the presence of an intact metaphase spindle is required for cyclin B degradation. Finally, MPF activity is preferentially associated with the spindle after bisection of the oocyte. Taken together, these observations suggest that the mechanism maintaining the metaphase arrest in mouse oocytes involves an equilibrium between cyclin synthesis and degradation, probably controlled by CSF, and which is also dependent upon the three-dimensional organization of the spindle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号