首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absence of CD4+ T cell help has been suggested as a mechanism for failed anti-tumor cytotoxic T lymphocytes (CTL) response. We examined the requirement for CD4+ T cells to eliminate an immunogenic murine fibrosarcoma (6132A) inoculated into the peritoneal cavity. Immunocompetent C3H mice eliminated both single and repeat intraperitoneal (IP) inoculums, and developed high frequency of 6132A-specific interferon-γ (IFNγ)-producing CTL in the peritoneal cavity. Adoptive transfer of peritoneal exudate cells (PEC) isolated from control mice, protected SCID mice from challenge with 6132A. In contrast, CD4 depleted mice had diminished ability to eliminate tumor and succumbed to repeat IP challenges. Mice depleted of CD4+ T cells lacked tumor-specific IFNγ producing CTL in the peritoneal cavity. Adoptive transfer of PEC from CD4 depleted mice failed to protect SCID mice from 6132A. However, splenocytes isolated from same CD4 depleted mice prevented tumor growth in SCID mice, suggesting that 6132A-specific CTL response was generated, but was not sustained in the peritoneum. Treating CD4 depleted mice with agonist anti-CD40 antibody, starting on days 3 or 8 after initiating tumor challenge, led to persistence of 6132A-specific IFNγ producing CTL in the peritoneum, and eliminated 6132A tumor. The findings suggest that CTL can be activated in the absence of CD4+ T cells, but CD4+ T cells are required for a persistent CTL response at the tumor site. Exogenous stimulation through CD40 can restore tumor-specific CTL activity to the peritoneum and promote tumor clearance in the absence of CD4+ T cells.Supported in part by grants from Children’s Hospital of Wisconsin Foundation, Society of University Surgeons Foundation, Florence and Marshall Schwid Foundation, Elsa Pardee Foundation, Kathy Duffy Fogarty Fund of the Greater Milwaukee Foundation (JS) and NIH grant RO1-CA-37156 (HS); Andrew Lodge and Ping Yu have contributed equally to this work.  相似文献   

2.
CD8 CTLs have been accountable for the major effector cells responsible for the rejection of tumor cells. And CD40 signaling and IL-12 have been shown to be the essential pathways involved in the activation process. Immunizing mice with dendritic cells transduced with an adenovirus expressing the human melanoma antigen gp100, an immunization strategy of xenoimmunization, stimulated potent tumor protection dependent on effective CD4 T cells in the absence of CD8 T cells. Further studies revealed that neither CD40 signaling nor IL-12 was indispensable for the activation of dendritic and CD4 T cells in this model. Stimulation of effective antitumor immunity targeting the self-antigen did not elicit autoimmunity. The implications of this study were discussed.  相似文献   

3.
Recent studies have demonstrated the importance of CD40/CD154 (CD40L) interactions for the generation of cell-mediated antitumor immune responses. Here we show that signaling via CD40 (through the use of the activating anti-CD40 mAb, 1C10) can actually promote the in vitro generation of CTL activity by CD8+ splenic T cells from mice bearing a large MOPC-315 tumor. Anti-CD40 mAb had to be added at the initiation of the stimulation cultures of tumor-bearing splenic cells in order to realize fully its potentiating activity for cytotoxic T lymphocyte (CTL) generation, suggesting that signaling through CD40 is important at the inductive stage of antitumor cytotoxicity. Moreover, anti-CD40 mAb was found to enhance the expression of the B7-2 (CD86) and, to a lesser extent, the B7-1 (CD80) costimulatory molecules on B220+ cells (i.e., B cells), and B7-2 and, to a lesser extent, B7-1 molecules played an important role in the potentiating effect of anti-CD40 mAb for CTL generation by tumor-bearer splenic cells. Furthermore, B220+ cells were found to be essential for the potentiating effect of anti-CD40 mAb, as depletion of B220+ cells at the inductive stage completely abrogated the ability of anti-CD40 mAb to enhance CTL generation. Thus, signaling through CD40 enhances CTL generation by CD8+ T cells from tumor-bearing mice by a mechanism that involves the up-regulation of B7-2 and, to a lesser extent, B7-1 expression on B220+ cells. Received: 23 December 1998 / Accepted: 22 February 1999  相似文献   

4.
The tumor microenvironment may recruit monocytes, with a protumoral macrophage phenotype (M2) that plays an important role in solid tumor progression and metastasis. Therefore, it is necessary to understand the characteristics of these cells for cancer prevention and treatment. Bladder cancer tissue samples and paracarcinoma tissues samples were collected, and the expression of CD163+ cells in tumor tissues was observed. Then, we observed the expression of infiltrating CD45+CD14+CD163+ cell subset and analyzed the molecular expressions related to immunity and angiogenesis. C57/BL6 mice were inoculated subcutaneously, and dynamic changes of CD11b+F4/80+CD206+ mononuclear macrophages expression for tumor-bearing mice were detected. The results showed that the proportion of CD45+CD14+CD163+ mono-macrophage subset infiltrated by tumor tissue was significantly higher than that in paracarcinoma tissues. In bladder cancer tissue, the expression rate of CD40 in CD45+CD14+CD163- mono-macrophage subset was significantly lower than that in CD45+CD14+CD163+ mono-macrophage subset. Similar results were found in the paracarcinoma tissues. We found that, as the proportion of CD11b+F4/80+CD206+ mono-macrophages increased gradually, the difference was statistically significant. CD163+/CD206+ mono-macrophages in bladder cancer microenvironment are abnormally elevated, and these cells are closely related to tumor progression. CD40 may be an important molecule that exerts biological function in this subset.  相似文献   

5.
Receptor for hyaluronan-mediated motility (RHAMM) is overexpressed in various tumors with high frequency, and was recently identified as an immunogenic antigen by serologic screening of cDNA expression libraries. In this study, we explored whether RHAMM is a potential target for dendritic cell (DC) immunotherapy. We constructed a plasmid for transduction of in vitro-transcribed mRNAs into DCs to efficiently transport the intracellular protein RHAMM into MHC class II compartments by adding a late endosomal/lysosomal sorting signal to the RHAMM gene. Immunization of mice with modified RHAMM mRNA-transfected DCs (DC/RHAMM) induced killing activity against RHAMM-positive tumor cells in splenocytes. To examine whether CD4+ and/or CD8+ T cells were required for this antitumor immunity, an anti-CD4 or anti-CD8 antibody was administered to mice after immunization with DC/RHAMM. Depletion of CD4+ T cells significantly diminished the induction of tumor cell-killing activity in splenocytes, whereas CD8+ T cell depletion had no effect. We then investigated the therapeutic effect of DC/RHAMM in a 3-day tumor model of EL4. DC/RHAMM was administered to mice on days 3, 7 and 10 after EL4 tumor inoculation. The treatment markedly inhibited tumor growth compared to control DCs. Moreover, antibody-mediated depletion of CD4+ T cells completely abrogated the therapeutic effect of DC/RHAMM, whereas depletion of CD8+ T cells had no effect. The results of this preclinical study indicate that DCs transfected with a modified RHAMM mRNA targeted to MHC class II compartments can induce CD4+ T cell-mediated antitumor activity in vivo.  相似文献   

6.
In mice, splenic conventional dendritic cells (cDCs) can be separated, based on their expression of CD8α into CD8 and CD8+ cDCs. Although previous experiments demonstrated that injection of antigen (Ag)-pulsed CD8 cDCs into mice induced CD4 T cell differentiation toward Th2 cells, the mechanism involved is unclear. In the current study, we investigated whether OX40 ligand (OX40L) on CD8 cDCs contributes to the induction of Th2 responses by Ag-pulsed CD8 cDCs in vivo, because OX40–OX40L interactions may play a preferential role in Th2 cell development. When unseparated Ag-pulsed OX40L-deficient cDCs were injected into syngeneic BALB/c mice, Th2 cytokine (IL-4, IL-5, and IL-10) production in lymph node cells was significantly reduced. Splenic cDCs were separated to CD8 and CD8+ cDCs. OX40L expression was not observed on freshly isolated CD8 cDCs, but was induced by anti-CD40 mAb stimulation for 24 h. Administration of neutralizing anti-OX40L mAb significantly inhibited IL-4, IL-5, and IL-10 production induced by Ag-pulsed CD8 cDC injection. Moreover, administration of anti-OX40L mAb with Ag-pulsed CD8 cDCs during a secondary response also significantly inhibited Th2 cytokine production. Thus, OX40L on CD8 cDCs physiologically contributes to the development of Th2 cells and secondary Th2 responses induced by Ag-pulsed CD8 cDCs in vivo.  相似文献   

7.
Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype.  相似文献   

8.
Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40−/− deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40−/− mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may represent important therapeutic modalities for neurodegenerative and neurodevelopmental disorders, as well as, for enhancement of neurogenesis.  相似文献   

9.
Purpose: Immunologic-based cancer treatment modalities represent an active area of investigation. Included in these strategies are passive administration of monoclonal antibodies which recognize tumor-associated antigens and active vaccination with identified tumor antigens. However, several problems associated with these types of treatment strategies have been identified. Methods: In this report, we address certain issues by employing a murine model for experimental pulmonary metastasis and a tumor antigen vaccination strategy that induces complete tumor immunity in this system. Utilizing this model, we attempt to address issues related to unresponsiveness to tumor antigen immunization induced by passive administration of a rat monoclonal anti-CD4 and the induction of anti-idiotype responses to a passively administered monoclonal antibody and the effects on the induction of tumor immunity. Results: The results presented indicate that passive administration of rat monoclonal anti-CD4 exhibits immunosuppressive effects that inhibit the production of antibodies to the tumor antigen immunization and abolishes tumor immunity. Repeated administration of the rat monoclonal anti-CD4 results in an anti-idiotype response that can abrogate unresponsiveness to tumor antigen immunization and promote systemic tumor immunity. Conclusions: The data examine a number of potential problems associated with immunologic-based treatments for cancer. These problems include the potential for tolerance to the tumor antigen and establishing an immunocompromised state where immunization with a tumor antigen failed to generate tumor immunity. Approaches to eliminate tolerant T cells by targeting anti-CD4 via anti-idiotype responses that could be generated in vivo without CD4+ T cells allowed for recovery of nontolerant T cells, and an antibody response to the tumor antigen that results in tumor immunity.Abbreviations CTL Cytotoxic T lymphocyte - FITC Fluorescein isothiocyanate - OD Optical density - PBS Phosphate-buffered saline - SV40 Simian virus 40  相似文献   

10.
In this report we analyzed the impact of interleukin-4 (IL-4) on tumor-associated simian virus 40 (SV40) large T-antigen (TAg)-specific CD8+ cytotoxic T cells during rejection of syngeneic SV40 transformed mKSA tumor cells in BALB/c mice. Strikingly, challenge of naïve mice with low doses of mKSA tumor cells revealed a CD8+ T cell-dependent prolonged survival time of naïve IL-4?/? mice. In mice immunized with SV40 TAg we observed in IL-4?/? mice, or in wild type mice treated with neutralizing anti-IL-4 monoclonal antibody, a strongly enhanced TAg-specific cytotoxicity of tumor associated CD8+ T cells. The enhanced cytotoxicity in IL-4?/? mice was accompanied by a significant increase in the fraction of CD8+ tumor associated T-cells expressing the cytotoxic effector molecules granzyme A and B and in granzyme B-specific enzymatic activity. The data suggest that endogenous IL-4 can suppress the generation of CD8+ CTL expressing cytotoxic effector molecules especially when the antigen induces only a very weak CTL response.  相似文献   

11.
Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.  相似文献   

12.
CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses.  相似文献   

13.
Targeting interleukin-2 (IL-2) and/or agonist anti-CD40 antibody (Ab) into tumors represents an effective vaccination strategy that avoids systemic toxicity and resolves treated-site tumors. Here, we examined IL-2 and/or anti-CD40 Ab-driven local versus systemic T cell function and the installation of T cell memory. Single tumor studies showed that IL-2 induced a potent CD4+ and CD8+ T cell response that was limited to the draining lymph node and treated-site tumor, and lymph node tumor-specific CD8+ T cells did not upregulate CD44. A two-tumor model showed that while IL-2-treated-site tumors resolved, distal tumors continued to grow, implying limited systemic immunity. In contrast, anti-CD40 Ab treatment with or without IL-2 expanded the systemic T cell response to non-draining lymph nodes, and distal tumors resolved. Tumor-specific T cells in lymph nodes of anti-CD40 Ab ± IL-2-treated mice upregulated CD44, demonstrating activation and transition to effector/memory migratory cells. While CD40-activated CD4+ T cells were not required for eradicating treated-site tumors, they, plus CD8+ T cells, were crucial for removing distal tumors. Rechallenge/depletion experiments showed that the effector/memory phase required the presence of previously CD40/IL-2-activated CD4+ and CD8+ T cells to prevent recurrence. These novel findings show that different T cell effector mechanisms can operate for the eradication of local treated-site tumors versus untreated distal tumors and that signaling through CD40 generates a whole of body, effector/memory CD4+ and CD8+ T cell response that is amplified and prolonged via IL-2. Thus, successful immunotherapy needs to generate collaborating CD4+ and CD8+ T cells for a complete long-term protective cure.  相似文献   

14.
Intracellular pathogens are capable of inducing vigorous CD8+ T cell responses. However, we do not entirely understand the factors driving the generation of large pools of highly protective memory CD8+ T cells. Here, we studied the generation of endogenous ovalbumin-specific memory CD8+ T cells following infection with recombinant vesicular stomatitis virus (VSV) and Listeria monocytogenes (LM). VSV infection resulted in the generation of a large ovalbumin-specific memory CD8+ T cell population, which provided minimal protective immunity that waned with time. In contrast, the CD8+ T cell population of LM-ova provided protective immunity and remained stable with time. Agonistic CD40 stimulation during CD8+ T cell priming in response to VSV infection enabled the resultant memory CD8+ T cell population to provide strong protective immunity against secondary infection. Enhanced protective immunity by agonistic anti-CD40 was dependent on CD70. Agonistic anti-CD40 not only enhanced the size of the resultant memory CD8+ T cell population, but enhanced their polyfunctionality and sensitivity to antigen. Our data suggest that immunomodulation of CD40 signaling may be a key adjuvant to enhance CD8+ T cell response during development of VSV vaccine strategies.  相似文献   

15.
Preventive immunotherapy is an attractive strategy for patients at a high risk of having cancer. The success of prophylactic cancer vaccines would depend on the selection of target antigens that are essential for tumour growth and progression. The overexpression of GM3 ganglioside in murine and human melanomas and its important role in tumour progression makes this self antigen a potential target for preventive immunotherapy of this neoplasm. We have previously shown that preventive administration of a GM3-based vaccine to C57BL/6 mice elicited the rejection of the GM3 positive-B16 melanoma cells in most of the animals. Despite the crucial role of cellular immune response in tumour protection, the involvement of T cells in anti-tumour immunity of ganglioside vaccines is not described. Here, we examined the mechanisms by which this immunogen confers tumour protection. We have found that induction of anti-GM3 IgG antibodies correlated with tumour protection. Surprisingly, CD8+ T cells, but not NK1.1+ cells, are required in the effector phase of the antitumour immune response. The depletion of CD4+ T cells during immunization phase did not affect the anti-tumour activity. In addition, T cells from surviving-immunized animals secreted IFNγ when were co-cultured with IFNα-treated B16 melanoma cells or DCs pulsed with melanoma extract. Paradoxically, in spite of the glycolipidic nature of this antigen, these findings demonstrate the direct involvement of the cellular immune response in the anti-tumour protection induced by a ganglioside-based vaccine. Grant support: Center of Molecular Immunology, Elea Laboratories and Recombio.  相似文献   

16.
The required activities of CD4+ T cells and antibody against the virally encoded oncoprotein simian virus 40 (SV40) Tag have previously been demonstrated by our laboratory to be mediators in achieving antitumor responses and tumor protection through antibody-dependent cell-mediated cytotoxicity (ADCC). In this study, we further characterize the necessary immune cell components that lead to systemic tumor immunity within an experimental pulmonary metastatic model as the result of SV40 Tag immunization and antibody production. Immunized animals depleted of CD8+ T cells at the onset of experimental tumor cell challenge developed lung tumor foci and had an overall decreased survival due to lung tumor burden, suggesting a role for CD8+ T cells in the effector phase of the immune response. Lymphocytes and splenocytes harvested from SV40 Tag-immunized mice experimentally inoculated with tumor cells synthesized increased in vitro levels of the Th1 cytokine gamma interferon (IFN-γ), as assessed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry assays. CD8+ T-cell activity was also heightened in SV40 Tag-immunized and tumor cell-challenged mice, based upon intracellular production of perforin, confirming the cytolytic properties of CD8+ T cells against tumor cell challenge. Altogether, these data point to the role of recombinant SV40 Tag protein immunization in initiating a cytotoxic T-lymphocyte (CTL) response during tumor cell dissemination and growth. The downstream activity of CD8+ T cells within this model is likely initiated from SV40 Tag-specific antibody mediating ADCC tumor cell destruction.Determining the immunologic mechanisms involved in antitumor responses can provide valuable insight into developing and formulating appropriate immunotherapeutic strategies against a range of human cancers (25). Cell-mediated immunity involving CD8+ T lymphocytes is generally regarded as the primary response to utilize due to its potent and efficient cytotoxicity against tumor cell targets in vitro and in animal models (10). Indeed, the proof of concept of this approach is best characterized by specialized conditioning protocols that involve autologous transfer of tumor infiltrating lymphocytes (TILs) in metastatic melanoma patients, with objective responses that approximate 70% (8). However, the efficacy of TILs harvested from additional cancer types have been less than effective, and additional strategies, such as genetic modification of peripheral blood mononuclear cells, are being explored to improve and extend the approach of cytotoxic T-lymphocyte (CTL) immunotherapy clinically (33, 46).The roles of immune components such as CD4+ T cells and antibody have been given less attention within the context of promoting tumor immunity against a range of tumor antigens. For example, the ability of CD4+ T cells to activate humoral immunity can lead to antitumor responses that involve antibody-dependent cell-mediated cytotoxicity (ADCC) (17). In this scenario, antibody binds its targeted antigen and effectors such as natural killer (NK) cells lyse tumorigenic cells through interaction with the Fc region of the bound antibody. The efficacy of ADCC has been realized in scenarios involving breast cancer and non-Hodgkin''s lymphoma, for example, and to date, the only FDA-approved immunologic treatments against these malignancies involve antibody-based therapies (5).The concurrent roles of antibody—with specific emphasis on ADCC—and CD8+ T-cell immunity within the context of tumor immunity have not been widely reported. Several recent studies have commented on the ability of antibody-bound tumor cells, particularly as a whole tumor cell-dendritic cell (DC) vaccination approach, to initiate CTL activity by engaging DCs through Fc receptors (9, 19, 34). However, to our knowledge, the mechanistic aspects of ADCC (e.g., NK-mediated lysis) promoting CD8+ T-cell activity have been explored in relatively few studies (27, 41). From an immunotherapeutic standpoint, it may be preferable in certain settings to induce both the humoral and cell-mediated arms of the immune system to offset the progression of tumor cell growth and dissemination. Namely, these strategies could include active or passive approaches to first effectively induce ADCC in response to a tumor antigen, which would promote CTL activity against additional tumor targets through cross-presentation.Our laboratory has been involved in determining the immunologic mechanisms of tumor immunity induced by the virally encoded tumor-specific antigen simian virus 40 (SV40) large tumor antigen (Tag). The mechanistic aspects of SV40 Tag-induced tumor immunity have been examined within an experimental murine model of pulmonary metastasis. To date, CD4+ T cells and SV40 Tag-specific antibody have been implicated as required immune components within this murine system in order to achieve complete systemic tumor immunity (18). These studies demonstrated that during the course of immunization with SV40 Tag (i.e., the induction-phase response), CD4+ T cells were required to induce an SV40 Tag humoral response. The specific role of the antibody response against an experimental tumor cell challenge was observed to involve ADCC-mediated clearance pathways (4, 23).In the present study, we further characterize the immunologic response to SV40 Tag immunization by observing the necessary immune cell components following experimental challenge (i.e., the effector-phase response) with a tumor cell line expressing SV40 Tag. With the development of an SV40 Tag antibody response following SV40 Tag immunization in vivo, CD8+ T-cell depletion during the effector phase resulted in the formation of lung tumor foci and decreased survival not observed with the abrogation of CD4+ T cells. SV40 Tag-immunized mice also displayed a heightened Th1 response and CD8+ CTL activity after experimental tumor cell challenge, as assessed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry assays. In all, these data indicate that CD8+ T cells mediate tumor immunity following antibody activation in response to the tumor-specific antigen SV40 Tag. We hypothesize that CD8+ T-cell activity is initiated due to cross-presentation mechanisms as a result of ADCC activity against SV40 Tag. We are not aware of another published report that formulates a role for ADCC activity against a viral oncoprotein in this manner in order to engage CD8+ T-cell activation.SV40 Tag has been reported to be expressed in a number of human cancers, including malignant pleural mesothelioma and non-Hodgkin''s lymphoma, although a causal link between SV40 infection and tumorigenesis is uncertain (11, 24, 35). The results of this study have direct implications for the construction of an appropriate immunotherapeutic strategy for patients suffering malignancies expressing the SV40 Tag tumor-specific antigen.  相似文献   

17.
IL-10-producing B (Breg) cells regulate various immune responses. However, their phenotype remains unclear. CD40 expression was significantly increased in B cells by LPS, and the Breg cells were also enriched in CD40hiCD5+ B cells. Furthermore, CD40 expression on Breg cells was increased by IL-10, CD40 ligand, and B cell-activating factor, suggesting that CD40hi is a common phenotype of Breg cells. LPS-induced CD40 expression was largely suppressed by an anti-IL-10 receptor antibody and in IL-10−/−CD5+CD19+ B cells. The autocrine effect of IL-10 on the CD40 expression was largely suppressed by an inhibitor of JAK/STAT3. In vivo, the LPS treatment increased the population of CD40hiCD5+ Breg cells in mice. However, the population of CD40hiCD5+ B cells was minimal in IL-10−/− mice by LPS. Altogether, our findings show that Breg cells are largely enriched in CD40hiCD5+ B cells and the autocrine effect of IL-10 is critical to the formation of CD40hiCD5+ Breg cells. [BMB Reports 2015; 48(1): 54-59]  相似文献   

18.
The function of T cell subsets in tumor-bearing mice was examined using an in vitro culture system of anti-(sheep red blood cell) antibody production, which is known to be dependent on T cells. The helper function of T cells of fibrosarcoma-MethA-bearing mice in antibody production decreased with the tumor stage of the mice. T cells were separated into CD4+ and CD8+ cells for further analysis of T cell subsets by the panning method using monoclonal antibodies. The helper function of CD4+ T cells in antibody production began to decrease significantly in tumor-bearing mice 1 week after the tumor transplantation. On the other hand, the suppressive function of CD8+ T cells was retained and had not decreased in the mice even 3 weeks after the transplantation. The same changes in function of CD4+ and CD8+ T cells were also observed in Methl-bearing mice. These results suggested that this tumor-associated immunosuppression in antibody production is attributable to the decrease in helper activity of CD4+ T cells and the maintenance of the suppressive activity of CD8+ T cells.  相似文献   

19.
A small proportion of human CD3+ T lymphocytes are known to co-express CD56, an antigen usually restricted in its expression to natural killer (NK) cells. Whereas the in vivo function of CD3+ CD56+ T cells remains unknown, we and others have previously shown that both in vitro and in vivo, these cells can mediate a significantly greater degree of MHC-unrestricted cytotoxicity against a variety of human tumor cells when compared to either CD3+ CD56 T cells or lymphokine activated killer (LAK) cells. While the mechanisms regulating the in vivo expansion of CD56+ T cells are not known, here we demonstrate the importance of CD2-mediated IL-12-dependent signals in the in vitro expansion of CD56+ T cells. Specifically, we show that activated monocytes provide a contact dependent factor (CD58/LFA-3) and a soluble factor (IL-12), both critical for the in vitro expansion of CD56+ T cells. The biological and therapeutic implications of these findings are discussed. Received: 4 May 2000 / Accepted: 25 August 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号