首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to determine the effect of chronic vasospasm after SAH on angiogenesis and the effect of endothelin-1, the main causative factor in vasospasm, on this process. Male Wistar rats, 220-250 g, were examined. Seven days after cannulation of the cisterna magna (CM), a 100 microl dose of non-heparinized blood was administered to induce SAH. Sham SAH (aSAH) was induced by intracisternal injection of 100 microl of artificial cerebrospinal fluid. Endothelin receptor antagonist BQ-123 in a dose of 40 nmol in 50 microl of cerebrospinal fluid was given three times: 20 min. before SAH and aSAH, 60 min and 24 hours after SAH and aSAH. The same pattern of BQ-123 administration was used in the nonSAH group. The brains were removed 48 hours later for histological evaluation. Vascular surface density was measured in cerebral hemisphere sections (at the level of the dorsal part of the hippocampus) and brain stem sections (1/2 of the pons). An increase in angiogenesis was observed after SAH, compared to control values. The administration of BQ-123, a specific endothelin receptor blocker inhibits angiogenesis in cerebral hemispheres after SAH.  相似文献   

2.

Background

Grading of patients with aneurysmal subarachnoid hemorrhage (aSAH) is often confounded by seizure, hydrocephalus or sedation and the prediction of prognosis remains difficult. Recently, copeptin has been identified as a serum marker for outcomes in acute ischemic stroke and intracerebral hemorrhage (ICH). We investigated whether copeptin might serve as a marker for severity and prognosis in aSAH.

Methods

Eighteen consecutive patients with aSAH had plasma copeptin levels measured with a validated chemiluminescence sandwich immunoassay. The primary endpoint was the association of copeptin levels at admission with the World Federation of Neurological Surgeons (WFNS) grade score after resuscitation. Levels of copeptin were compared across clinical and radiological scores as well as between patients with ICH, intraventricular hemorrhage, hydrocephalus, vasospasm and ischemia.

Results

Copeptin levels were significantly associated with the severity of aSAH measured by WFNS grade (P = 0.006), the amount of subarachnoid blood (P = 0.03) and the occurrence of ICH (P = 0.02). There was also a trend between copeptin levels and functional clinical outcome at 6-months (P = 0.054). No other clinical outcomes showed any statistically significant association.

Conclusions

Copeptin may indicate clinical severity of the initial bleeding and may therefore help in guiding treatment decisions in the setting of aSAH. These initial results show that copeptin might also have prognostic value for clinical outcome in aSAH.  相似文献   

3.

Background

Cerebral vasospasm is the most important potentially treatable cause of mortality and morbidity following aneurysmal subarachnoid hemorrhage (aSAH). Clazosentan, a selective endothelinreceptor antagonist, has been suggested to help reduce the incidence of vasospasm in patients with aSAH. However, the results were controversial in previous trials. This meta-analysis attempts to assess the effect of clazosentan in patients with aSAH.

Methodology/Principal Findings

We systematically searched Pubmed, Embase, and the Cochrane Library from their inception until June, 2012. All randomized controlled trials (RCTs) related to the effect of clazosentan in aSAH were included. The primary outcomes included the incidence of angiographic vasospasm, new cerebral infarction (NCI), delayed ischemic neurological deficits (DIND), and vasospasm-related morbidity/mortality (M/M); the second outcomes included the occurrence of rescue therapy, all-cause-mortality, and poor outcome. 4 RCTs were included with a total of 2156 patients. The risk of angiographic vasospasm (relative risk [RR] = 0.58; 95% CI, 0.48 to 0.71), DIND (RR = 0.76; 95% CI, 0.62 to 0.92), and vasospasm-related M/M (RR = 0.80; 95% CI, 0.67 to 0.96) were statistically significantly reduced in the clazosentan group. Patients treated with clazosentan had a reduced occurrence of rescue therapy (RR = 0.62; 95% CI, 0.49 to 0.79). However, no statistically significant effects were observed in NCI (RR = 0.74; 95% CI, 0.52 to 1.04), mortality (RR = 1.03; 95% CI, 0.71 to 1.49), and poor outcome (RR = 1.12; 95% CI, 0.96 to 1.30).

Conclusions/Significance

Our pooling data supports that clazosentan is probably effective in preventing the occurrence of angiographic vasospasm, vasospasm-related DIND, vasospasm related M/M, and rescue therapy. However, no evidence lends significant supports to the benefits of clazosentan in decreasing the occurrence of NCI, mortality or improving the functional outcome.  相似文献   

4.
Aneurysmal subarachnoid hemorrhage (aSAH) is one type of hemorrhagic stroke in humans. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NPs), derived from arachidonic acid and docosahexaenoic acid (DHA), respectively, are specific markers of lipid peroxidation. We previously demonstrated that F2-IsoPs levels in cerebrospinal fluid (CSF) of aSAH patients positively correlated with poor clinical conditions. In this work, we refined F4-NPs analysis and investigated the role of potential oxidative damage to neurons in aSAH patients by detecting F4-NPs in CSF. [2H4]-15-F2t-IsoP, rather than [18O2]-17-F4c-NP or [2H4]-PGF, was used as the internal standard for F4-NPs analysis. One problem of the use of [18O2]-17-F4c-NP was the potential interference resulting from F2-dihomo-IsoPs in CSF. CSF specimens of 15 aSAH patients for up to 10 days and those of 12 non-aSAH controls were analyzed. First day, mean, and peak levels of F4-NPs were all significantly higher in aSAH patients than in controls and correlated with the Fisher Scale and 3-month Glasgow Outcome Scale, but only mean levels of F4-NPs correlated with Hunt and Hess Grade. The results first demonstrate oxidative damage to DHA in brain tissue following aSAH and suggest that F4-NPs in CSF could be a better predictor for outcome of aSAH than F2-IsoPs at early time points.  相似文献   

5.

Background

Cortical ischemic lesions represent the predominant pathomorphological pattern of focal lesions after aneurysmal subarachnoid hemorrhage (aSAH). Autopsy studies suggest that they occur adjacent to subarachnoid blood and are related to spasm of small cortical rather than proximal arteries. Recent clinical monitoring studies showed that cortical spreading depolarizations, which induce cortical arterial spasms, are involved in lesion development. If subarachnoid blood induces adjacent cortical lesions, it would be expected that (i) they also develop after traumatic subarachnoid hemorrhage (tSAH), and (ii) lesions after tSAH can occur in absence of angiographic vasospasm, as was found for aSAH.

Case presentation

An 86-year-old woman was admitted to our hospital with fluctuating consciousness after hitting her head during a fall. The initial computed tomography (CT) was significant for tSAH in cortical sulci. On day 8, the patient experienced a secondary neurological deterioration with reduced consciousness and global aphasia. Whereas the CT scan on day 9 was still unremarkable, magnetic resonance imaging (MRI) on day 10 revealed new cortical laminar infarcts adjacent to sulcal blood clots. Proximal vasospasm was ruled out using MR and CT angiography and Doppler sonography. CT on day 14 confirmed the delayed infarcts.

Conclusions

We describe a case of delayed cortical infarcts around sulcal blood clots after tSAH in the absence of proximal vasospasm, similar to results found previously for aSAH. As for aSAH, this case suggests that assessment of angiographic vasospasm is not sufficient to screen for risk of delayed infarcts after tSAH. Electrocorticography is suggested as a complementary method to monitor the hypothesized mechanism of spreading depolarizations.
  相似文献   

6.

Background

Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating condition that frequently causes death or significant disabilities. Blood tests to predict possible early complications could be very useful aids for therapy. The aim of this study was to analyze serum levels of kallikrein 6 (KLK6) in individuals with aSAH to determine the relevance of this protease with the outcome of these patients.

Methodology/Principal Findings

A reference interval for KLK6 was established by using serum samples (n = 136) from an adult population. Additionally, serum samples (n = 326) from patients with aSAH (n = 13) were collected for 5 to 14 days, to study the concentration of KLK6 in this disease. The correlation between KLK6 and S100B, an existing brain damage biomarker, was analyzed in 8 of 13 patients. The reference interval for KLK6 was established to be 1.04 to 3.93 ng/mL. The mean levels in patients with aSAH within the first 56 hours ranged from 0.27 to 1.44 ng/mL, with lowest levels found in patients with worse outcome. There were significant differences between patients with good recovery or moderate disability (n = 8) and patients with severe disability or death (n = 5) (mean values of 1.03 ng/mL versus 0.47 ng/mL, respectively) (p<0.01). There was no significant correlation between KLK6 and S100B.

Conclusions/Significance

Decreased serum concentrations of KLK6 are found in patients with aSAH, with the lowest levels in patients who died.  相似文献   

7.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by pathological deposits of β‐amyloid (Aβ) in senile plaques, intracellular neurofibrillary tangles (NFTs) comprising hyperphosphorylated aggregated tau, synaptic dysfunction and neuronal death. Substantial evidence indicates that disrupted neuronal calcium homeostasis is an early event in AD that could mediate synaptic dysfunction and neuronal toxicity. Sodium calcium exchangers (NCXs) play important roles in regulating intracellular calcium, and accumulating data suggests that reduced NCX function, following aberrant proteolytic cleavage of these exchangers, may contribute to neurodegeneration. Here, we show that elevated calpain, but not caspase‐3, activity is a prominent feature of AD brain. In addition, we observe increased calpain‐mediated cleavage of NCX3, but not a related family member NCX1, in AD brain relative to unaffected tissue and that from other neurodegenerative conditions. Moreover, the extent of NCX3 proteolysis correlated significantly with amounts of Aβ1–42. We also show that exposure of primary cortical neurons to oligomeric Aβ1–42 results in calpain‐dependent cleavage of NCX3, and we demonstrate that loss of NCX3 function is associated with Aβ toxicity. Our findings suggest that Aβ mediates calpain cleavage of NCX3 in AD brain and therefore that reduced NCX3 activity could contribute to the sustained increases in intraneuronal calcium concentrations that are associated with synaptic and neuronal dysfunction in AD.  相似文献   

8.
The aged dog naturally develops cognitive decline in many different domains (including learning and memory) but also exhibits human-like individual variability in the aging process. The neurobiological basis for cognitive dysfunction may be related to structural changes that reflect neurodegeneration. Molecular cascades that contribute to degeneration in the aging dog brain include the progressive accumulation of beta-amyloid (Aβ) in diffuse plaques and in the cerebral vasculature. In addition, neuronal dysfunction occurs as a consequence of mitochondrial dysfunction and cumulative oxidative damage. In combination, the aged dog captures key features of human aging, making them particularly useful for the development of preventive or therapeutic interventions to improve aged brain function. These interventions can then be translated into human clinical trials. This article is part of a Special Issue entitled: Animal Models of Disease.  相似文献   

9.

Background

The effectiveness of pharmacological strategies exclusively targeting secondary brain damage (SBD) following ischemic stroke, aneurysmal subarachnoid hemorrhage, aSAH, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and bacterial meningitis is unclear. This meta-analysis studied the effect of SBD targeted treatment on clinical outcome across the pathological entities.

Methods

Randomized, controlled, double-blinded trials on aforementioned entities with ‘death’ as endpoint were identified. Effect sizes were analyzed and expressed as pooled risk ratio (RR) estimates with 95% confidence intervals (CI). 123 studies fulfilled the criteria, with data on 66,561 patients.

Results

In the pooled analysis, there was a minor reduction of mortality for aSAH [RR 0.93 (95% CI:0.85–1.02)], ICH [RR 0.92 (95% CI:0.82–1.03)] and bacterial meningitis [RR 0.86 (95% CI:0.68–1.09)]. No reduction of mortality was found for ischemic stroke [RR 1.05 (95% CI:1.00–1.11)] and TBI [RR 1.03 (95% CI:0.93–1.15)]. Additional analysis of “poor outcome” as endpoint gave similar results. Subgroup analysis with respect to effector mechanisms showed a tendency towards a reduced mortality for the effector mechanism category “oxidative metabolism/stress” for aSAH with a risk ratio of 0.86 [95% CI: 0.73–1.00]. Regarding specific medications, a statistically significant reduction of mortality and poor outcome was confirmed only for nimodipine for aSAH and dexamethasone for bacterial meningitis.

Conclusions

Our results show that only a few selected SBD directed medications are likely to reduce the rate of death and poor outcome following aSAH, and bacterial meningitis, while no convincing evidence could be found for the usefulness of SBD directed medications in ischemic stroke, ICH and TBI. However, a subtle effect on good or excellent outcome might remain undetected. These results should lead to a new perspective of secondary reactions following cerebral injury. These processes should not be seen as suicide mechanisms that need to be fought. They should be rather seen as well orchestrated clean-up mechanisms, which may today be somewhat too active in a few very specific constellations, such as meningitis under antibiotic treatment and aSAH after surgical or endovascular exclusion of the aneurysm.
  相似文献   

10.
11.
缺血性中风触发的炎症反应是一个级联放大过程,不仅可直接对缺血脑组织造成继发性损伤,还可通过与其他病理生理通路的相互影响、相互促进,共同对缺血后脑组织造成不可逆损伤。因此,采用炎症标记物对脑缺血损伤及其预后进行评价,具有重要临床意义。临床研究发现,多炎症标记物法用于缺血性中风的诊治和预后评价比单炎症标记物法更全面、更准确,故更具明显优势。综述脑缺血引发的炎症机制、脑缺血所致炎症通路与其他病理生理通路( 如氧化应激、细胞凋亡和兴奋性毒性) 的关联以及炎症标记物在缺血性中风预后评价中的应用。  相似文献   

12.
Dysregulated cholinergic signaling is an early hallmark of Alzheimer disease (AD), usually ascribed to degeneration of cholinergic neurons induced by the amyloid-β peptide (Aβ). It is now generally accepted that neuronal dysfunction and memory deficits in the early stages of AD are caused by the neuronal impact of soluble Aβ oligomers (AβOs). AβOs build up in AD brain and specifically attach to excitatory synapses, leading to synapse dysfunction. Here, we have investigated the possibility that AβOs could impact cholinergic signaling. The activity of choline acetyltransferase (ChAT, the enzyme that carries out ACh production) was inhibited by ~50% in cultured cholinergic neurons exposed to low nanomolar concentrations of AβOs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, lactate dehydrogenase release, and [(3)H]choline uptake assays showed no evidence of neuronal damage or loss of viability that could account for reduced ChAT activity under these conditions. Glutamate receptor antagonists fully blocked ChAT inhibition and oxidative stress induced by AβOs. Antioxidant polyunsaturated fatty acids had similar effects, indicating that oxidative damage may be involved in ChAT inhibition. Treatment with insulin, previously shown to down-regulate neuronal AβO binding sites, fully prevented AβO-induced inhibition of ChAT. Interestingly, we found that AβOs selectively bind to ~50% of cultured cholinergic neurons, suggesting that ChAT is fully inhibited in AβO-targeted neurons. Reduction in ChAT activity instigated by AβOs may thus be a relevant event in early stage AD pathology, preceding the loss of cholinergic neurons commonly observed in AD brains.  相似文献   

13.
Many forms of neurodegeneration are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage, however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are primary events in the delayed onset observed in Huntington's disease (HD). We hypothesize that an age-dependent increase in mtDNA damage contributes to mitochondrial dysfunction in HD. Two HD mouse models were studied, the 3-nitropropionic acid (3-NPA) chemically induced model and the HD transgenic mice of the R6/2 strain containing 115-150 CAG repeats in the huntingtin gene. The mitochondrial toxin 3-NPA inhibits complex II of the electron transport system and causes neurodegeneration that resembles HD in the striatum of human and experimental animals. We measured nuclear and mtDNA damage by quantitative PCR (QPCR) in striatum of 5- and 24-month-old untreated and 3-NPA treated C57BL/6 mice. Aging caused an increase in damage in both nuclear and mitochondrial genomes. 3-NPA induced 4-6 more damage in mtDNA than nuclear DNA in 5-month-old mice, and this damage was repaired by 48h in the mtDNA. In 24-month-old mice 3NPA caused equal amounts of nuclear and mitochondrial damage and this damage persistent in both genomes for 48h. QPCR analysis showed a progressive increase in the levels of mtDNA damage in the striatum and cerebral cortex of 7-12-week-old R6/2 mice. Striatum exhibited eight-fold more damage to the mtDNA compared with a nuclear gene. These data suggest that mtDNA damage is an early biomarker for HD-associated neurodegeneration and supports the hypothesis that mtDNA lesions may contribute to the pathogenesis observed in HD.  相似文献   

14.
We assess the availability of plasma biomarkers to monitor the brain damage and the therapeutic efficacy of edaravone. The study consisted of 51 patients with ischemic cerebral infarcts. They were divided into 2 groups: GI (n = 24) had cortical lesions, and GII (n = 27) had lesions in the basal ganglia or brain stem. Edaravone was administered to 27 randomly selected patients (GIa, n = 13; GIIa, n = 14) and its efficacy was studied by comparing their plasma OxLDL, S-100B, and MnSOD levels to those in patients without edaravone (GIb, n = 11, GIIb, n = 13). Three days after the start of edaravone, plasma OxLDL was significantly lower in GIa than GIb patients (0.177 +/- 0.024 ng/microg apoB vs 0.219 +/- 0.026, P < 0.05). In GIIa patients, pre- and posttreatment plasma OxLDL was not significantly different (0.156 +/- 0.013 vs 0.152 +/- 0.020). In GIa patients, S-100B and MnSOD were significantly lower than in GIb patients (P < 0.05). The neurological condition at the time of discharge had recovered in GIa but not GIb patients. Ours is the first evidence to confirm the efficacy of edaravone by plasma biomarkers. In patients with cortical infarcts, edaravone reduced oxidative damage, thereby limiting the degree of brain damage.  相似文献   

15.
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is the main cause to poor outcomes of SAH patients, and early inflammation plays an important role in the acute pathophysiological events. It has been demonstrated that ethyl pyruvate (EP) has anti-inflammatory and neuroprotective effects in various critical diseases, however, the role of EP on EBI following SAH remains to be elucidated. Our study aimed to evaluate the effects of EP on EBI following SAH in the endovascular perforation rabbit model. All rabbits were randomly divided into three groups: sham, SAH?+?Vehicle (equal volume) and SAH?+?EP (30?mg/kg/day). MRI was performed to estimate the reliability of the EBI at 24 and 72?h after SAH. Neurological scores were recorded to evaluate the neurological deficit, ELISA kit was used to measure the level of tumor necrosis factor-α (TNF-α), and western blot was used to detect the expression of TNF-α, tJNK, pJNK, bax and bcl-2 at 24 and 72?h after SAH. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB) staining were used to detect neuronal apoptosis and neurodegeneration respectively, meanwhile hematoxylin and eosin (H&E) staining was used to assess the degree of vasospasm. Our results demonstrated that EP alleviated brain tissue injury (characterized by diffusion weighted imaging and T2 sequence in MRI scan), and significantly improved neurological scores at 72?h after SAH. EP decreased the level of TNF-α and downregulated pJNK/tJNK and bax/bcl-2 in cerebral cortex and hippocampus effectively both at 24 and 72?h after SAH. Furthermore, EP reduced TUNEL and FJB positive cells significantly. In conclusion, the present study supported that EP afforded neuroprotective effects possibly via reducing TNF-α expression and inhibition of the JNK signaling pathway. Therefore, EP may be a potent therapeutic agent to attenuate EBI following SAH.  相似文献   

16.

Background

Posterior Cortical Atrophy (PCA) is a neurodegenerative disease characterized by a progressive decline in selective cognitive functions anatomically referred to occipital, parietal and temporal brain regions, whose diagnosis is rather challenging for clinicians. The aim of this study was to assess, using quantitative Magnetic Resonance Imaging techniques, the pattern of regional grey matter loss and metabolism in individuals with PCA to improve pathophysiological comprehension and diagnostic confidence.

Methods

We enrolled 5 patients with PCA and 5 matched controls who all underwent magnetic resonance imaging (MRI) and spectroscopy (MRS). Patients also underwent neuropsychological and cerebrospinal fluid (CSF) assessments. MRI data were used for unbiased assessment of regional grey matter loss in PCA patients compared to controls. MRS data were obtained from a set of brain regions, including the occipital lobe and the centrum semiovale bilaterally, and the posterior and anterior cingulate.

Results

VBM analysis documented the presence of focal brain atrophy in the occipital lobes and in the posterior parietal and temporal lobes bilaterally but more pronounced on the right hemisphere. MRS revealed, in the occipital lobes and in the posterior cingulate cortex of PCA patients, reduced levels of N-Acetyl Aspartate (NAA, a marker of neurodegeneration) and increased levels of Myo-Inositol (Ins, a glial marker), with no hemispheric lateralization.

Conclusion

The bilateral but asymmetric pattern of regional grey matter loss is consistent with patients’ clinical and neuropsychological features and with previous literature. The MRS findings reveal different stages of neurodegeneration (neuronal loss; gliosis), which coexist and likely precede the occurrence of brain tissue loss, and might represent early biomarkers. In conclusion, this study indicates the potential usefulness of a multi-parametric MRI approach for an early diagnosis and staging of patients with PCA.  相似文献   

17.
Cytokines play a key role in mutual influence of the immunological, endocrine and CNS systems. It has been proven that proinflammatory ILs may intensify the cascade of biochemical changes in ischemic brain damage. Vasospasm, which may accompany SAH and often coexists with symptoms of DINDs, is the cause of ischemic changes in the brain. It is thought that immunological mechanisms may be one of the causes of degenerative-productive changes in vessel walls, in delayed vasospasm following SAH, which lead to substantial vasospasm and in consequence too cerebral ischemia. In the randomly selected group of patients, who underwent surgical treatment after aneurysmal SAH, we determined the concentration of IL-1 beta and IL-6 in CSF in the periods between Days 0 to 3; 4 to 7; and 8 to 15 after the occurrence of SAH. The presence and dynamics of development of vasospasm were assessed on the basis of increasing DINDs as well as CT and cerebral angiography. We examined the concentrations of ILs in CSF using radioimmunological methods, applying commercially available tests for their assessment. We found that in the period between 8 and 15 days after SAH, in increasing delayed vasospasm and DINDs, here is a statistically significant increase concentration of IL-1 beta in CSF (105.4 +/- 46.9 pg x ml-1; p<0.005), and no significant changes in patients without vasospasm and neurological deficits. On the other hand, we noted a statistically significant increase concentration of IL-6 in CSF (4802 +/- 1170 ng x ml-1; p<0.05) only in the acute phase after SAH (Days 0-3) in patients in poor clinical condition, in whom delayed vasospasm and cerebral ischemia developed later. This increase of ILs level in CSF is probably related to the intensity of the SAH, and secondarily aggravates the vasospasm and ischemic changes in the brain.  相似文献   

18.
Deposits of amyloid β-peptide (Aβ) in senile plaques and cerebral blood vessels is the prominent feature of Alzheimer's disease (AD), regardless of genetic predisposition. The cellular origin of cerebral deposits of Aβ or its precise role in the neurodegenerative process has not been established. Recently we demonstrated a novel action of β-amyloid on blood vessels—vasoactivity and endothelial damage through superoxide radicals. Since endothelial dysfunction is associated with vascular degenerative diseases, we examined the direct action of Aβ on endothelial cells in culture. Cells treated with Aβ displayed characteristics of necrotic cell death which was prevented by the free radical scavenging enzyme superoxide dismutase. Stimulation of endothelial nitric oxide (NO) production by the calcium ionophore, A23187, or bradykinin was inhibited by β-amyloid. We conclude that an imbalance of NO and oxygen radicals may mediate the Aβ-induced endothelial damage on endothelial cells in culture and may also contribute to a variety of pathophysiological conditions associated with aging: hypertension, cerebral ischemia, vasospasm, or stroke.  相似文献   

19.
ABSTRACT: BACKGROUND: One of the main causes of mortality and morbidity following subarachnoid haemorrhage (SAH) is the development of cerebral vasospasm, a frequent complication arising in the weeks after the initial bleeding. Despite extensive research, to date no effective treatment of vasospasm exists. Prostacyclin is a potent vasodilator and inhibitor of platelet aggregation. In vitro models have shown a relaxing effect of prostacyclin after induced contraction in cerebral arteries and a recent pilot trial showed positive effect on cerebral vasospasm in a clinical setting. No randomised, clinical trials have been conducted, investigating the possible pharmacodynamic effects of prostacyclin on the human brain following SAH. METHODS: This trial is a single-center, randomised, placebo controlled, parallel group, blinded, clinical, pilot trial. A total of 90 patients with SAH will be randomised to one of 3 intervention arms; epoprostenol 1 ng/kg/min, epoprostenol 2 ng/kg/min or placebo in addition to standard treatment. Trial medication will start day 5 after SAH and continue to day 10. Primary outcome measure is changes in regional cerebral blood flow from baseline in the arterial territories of the anterior cerebral artery, medial cerebral artery and the posterior cerebral artery, measured by CT perfusion scan. The secondary outcomes will be vasospasm measured by CT angiography, ischaemic parameters measured by brain microdialysis, flow velocities in the medial cerebral artery, clinical parameters and outcome (Glasgow Outcome Scale) at 3 months. CONCLUSION: The trial is an explorative, pilot trial designed to investigate the feasibility and possible effects of low-dose prostacyclin on a primary outcome of regional blood flow and vasospasm in the human brain following SAH. Trial registration: Clinicaltrials.gov NCT01447095.  相似文献   

20.
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1–40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca2 + homeostasis due to the release of Ca2 + from this intracellular store. Finally, Aβ1–40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1–40 concomitantly with caspase-12 activation. Furthermore, Aβ1–40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1–40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号