首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Circulating tumor DNA (ctDNA) carries information on tumor burden. However, the mutation spectrum is different among tumors. This study was designed to examine the utility of ctDNA for monitoring tumor burden based on an individual mutation profile.

Methodology

DNA was extracted from a total of 176 samples, including pre- and post-operational plasma, primary tumors, and peripheral blood mononuclear cells (PBMC), from 44 individuals with colorectal tumor who underwent curative resection of colorectal tumors, as well as nine healthy individuals. Using a panel of 50 cancer-associated genes, tumor-unique mutations were identified by comparing the single nucleotide variants (SNVs) from tumors and PBMCs with an Ion PGM sequencer. A group of the tumor-unique mutations from individual tumors were designated as individual marker mutations (MMs) to trace tumor burden by ctDNA using droplet digital PCR (ddPCR). From these experiments, three major objectives were assessed: (a) Tumor-unique mutations; (b) mutation spectrum of a tumor; and (c) changes in allele frequency of the MMs in ctDNA after curative resection of the tumor.

Results

A total of 128 gene point mutations were identified in 27 colorectal tumors. Twenty-six genes were mutated in at least 1 sample, while 14 genes were found to be mutated in only 1 sample, respectively. An average of 2.7 genes were mutated per tumor. Subsequently, 24 MMs were selected from SNVs for tumor burden monitoring. Among the MMs found by ddPCR with > 0.1% variant allele frequency in plasma DNA, 100% (8 out of 8) exhibited a decrease in post-operation ctDNA, whereas none of the 16 MMs found by ddPCR with < 0.1% variant allele frequency in plasma DNA showed a decrease.

Conclusions

This panel of 50 cancer-associated genes appeared to be sufficient to identify individual, tumor-unique, mutated ctDNA markers in cancer patients. The MMs showed the clinical utility in monitoring curatively-treated colorectal tumor burden if the allele frequency of MMs in plasma DNA is above 0.1%.  相似文献   

2.

Background

Synchronous tumors can be independent primary tumors or a primary-metastatic (clonal) pair, which may have clinical implications. Mutational profiling of tumor DNA is increasingly common in the clinic. We investigated whether mutational profiling can distinguish independent from clonal tumors in breast and other cancers, using a carefully defined test based on the Clonal Likelihood Score (CLS = 100 x # shared high confidence (HC) mutations/ # total HC mutations).

Methods

Statistical properties of a formal test using the CLS were investigated. A high CLS is evidence in favor of clonality; the test is implemented as a one-sided binomial test of proportions. Test parameters were empirically determined using 16,422 independent breast tumor pairs and 15 primary-metastatic tumor pairs from 10 cancer types using The Cancer Genome Atlas.

Results

We validated performance of the test with its established parameters, using five published data sets comprising 15,758 known independent tumor pairs (maximum CLS = 4.1%, minimum p-value = 0.48) and 283 known tumor clonal pairs (minimum CLS 13%, maximum p-value <0.01), across renal cell, testicular, and colorectal cancer. The CLS test correctly classified all validation samples but one, which it appears may have been incorrectly classified in the published data. As proof-of-concept we then applied the CLS test to two new cases of invasive synchronous bilateral breast cancer at our institution, each with one hormone receptor positive (ER+/PR+/HER2-) lobular and one triple negative ductal carcinoma. High confidence mutations were identified by exome sequencing and results were validated using deep targeted sequencing. The first tumor pair had CLS of 81% (p-value < 10–15), supporting clonality. In the second pair, no common mutations of 184 variants were validated (p-value >0.99), supporting independence. A plausible molecular mechanism for the shift from hormone receptor positive to triple negative was identified in the clonal pair.

Conclusion

We have developed the statistical properties of a carefully defined Clonal Likelihood Score test from mutational profiling of tumor DNA. Under identified conditions, the test appears to reliably distinguish between synchronous tumors of clonal and of independent origin in several cancer types. This approach may have scientific and clinical utility.  相似文献   

3.

Background

Observations of recurrent somatic mutations in tumors have led to identification and definition of signaling and other pathways that are important for cancer progression and therapeutic targeting. As tumor cells contain both an individual’s inherited genetic variants and somatic mutations, challenges arise in distinguishing these events in massively parallel sequencing datasets. Typically, both a tumor sample and a “normal” sample from the same individual are sequenced and compared; variants observed only in the tumor are considered to be somatic mutations. However, this approach requires two samples for each individual.

Results

We evaluate a method of detecting somatic mutations in tumor samples for which only a subset of normal samples are available. We describe tuning of the method for detection of mutations in tumors, filtering to remove inherited variants, and comparison of detected mutations to several matched tumor/normal analysis methods. Filtering steps include the use of population variation datasets to remove inherited variants as well a subset of normal samples to remove technical artifacts. We then directly compare mutation detection with tumor-only and tumor-normal approaches using the same sets of samples. Comparisons are performed using an internal targeted gene sequencing dataset (n = 3380) as well as whole exome sequencing data from The Cancer Genome Atlas project (n = 250). Tumor-only mutation detection shows similar recall (43–60%) but lesser precision (20–21%) to current matched tumor/normal approaches (recall 43–73%, precision 30–82%) when compared to a “gold-standard” tumor/normal approach. The inclusion of a small pool of normal samples improves precision, although many variants are still uniquely detected in the tumor-only analysis.

Conclusions

A detailed method for somatic mutation detection without matched normal samples enables study of larger numbers of tumor samples, as well as tumor samples for which a matched normal is not available. As sensitivity/recall is similar to tumor/normal mutation detection but precision is lower, tumor-only detection is more appropriate for classification of samples based on known mutations. Although matched tumor-normal analysis is preferred due to higher precision, we demonstrate that mutation detection without matched normal samples is possible for certain applications.
  相似文献   

4.
Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10-5). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples.  相似文献   

5.

Introduction

Circulating tumor cells (CTCs) could represent a non-invasive source of cancer cells used for longitudinal monitoring of the tumoral mutation status throughout the course of the disease. The aims of the present study were to investigate the detection of KRAS mutations in CTCs from patients with metastatic colorectal cancer (mCRC) and to compare their mutation status during treatment or disease progression with that of the corresponding primary tumors.

Materials and Methods

Identification of the seven most common KRAS mutations on codons 12 and 13 was performed by Peptide Nucleic Acid (PNA)-based qPCR method. The sensitivity of the assay was determined after isolation of KRAS mutant cancer cells spiked into healthy donors'' blood, using the CellSearch Epithelial Cell kit. Consistent detection of KRAS mutations was achieved in samples containing at least 10 tumor cells/7.5 ml of blood.

Results

The clinical utility of the assay was assessed in 48 blood samples drawn from 31 patients with mCRC. All patients had PIK3CA and BRAF wild type primary tumors and 14 KRAS mutant tumors. CTCs were detected in 65% of specimens obtained from 74% of patients. KRAS mutation analysis in CTC-enriched specimens showed that 45% and 16.7% of patients with mutant and wild type primary tumors, respectively, had detectable mutations in their CTCs. Assessing KRAS mutations in serial blood samples revealed that individual patient''s CTCs exhibited different mutational status of KRAS during treatment.

Conclusions

The current findings support the rationale for using the CTCs as a dynamic source of tumor cells which, by re-evaluating their KRAS mutation status, could predict, perhaps more accurately, the response of mCRC patients to targeted therapy.  相似文献   

6.

Background

Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases.

Methods

We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base).

Results

We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases.

Conclusions

We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.  相似文献   

7.
MicroRNAs (miRNAs) belong to a class of noncoding, regulatory RNAs that is involved in oncogenesis and shows remarkable tissue specificity. Their potential for tumor classification suggests they may be used in identifying the tissue in which cancers of unknown primary origin arose, a major clinical problem. We measured miRNA expression levels in 400 paraffin-embedded and fresh-frozen samples from 22 different tumor tissues and metastases. We used miRNA microarray data of 253 samples to construct a transparent classifier based on 48 miRNAs. Two-thirds of samples were classified with high confidence, with accuracy >90%. In an independent blinded test-set of 83 samples, overall high-confidence accuracy reached 89%. Classification accuracy reached 100% for most tissue classes, including 131 metastatic samples. We further validated the utility of the miRNA biomarkers by quantitative RT-PCR using 65 additional blinded test samples. Our findings demonstrate the effectiveness of miRNAs as biomarkers for tracing the tissue of origin of cancers of unknown primary origin.  相似文献   

8.
《Genomics》2021,113(4):1930-1939
Gene mutation detection and the resulted precision-medicine therapy is transforming clinical practice. Here, we report the use of a custom-developed, medium-sized, pan-cancer probe panel for the detection of somatic and germline mutations. We used a hybridization capture-based NGS assay for targeted deep sequencing of all exons and selected introns of 181 key cancer driver genes, covering both inherited risks and somatic mutations. We performed paired-variant calling on tumor samples and their matched normal samples. We processed clinical patient samples of formalin-fixed, paraffin embedded tumors (FFPE samples) and cell-free peripheral blood (cfDNA samples). We found germline mutations of inherited cancer risk at 9%; and discovered a novel germline mutation in BRCA1. Somatic mutation rate in driver genes is at 73.1%, much higher than previously reported. On recommending precision-medicine therapeutics, we achieved 91.6% for patients with FFPE samples.  相似文献   

9.

Introduction

Assessment of EGFR mutation in non-small cell lung cancer (NSCLC) patients is mandatory for optimization of pharmacologic treatment. In this respect, mutation analysis of circulating tumor cells (CTCs) may be desirable since they may provide real-time information on patient''s disease status.

Experimental Design

Blood samples were collected from 37 patients enrolled in the TRIGGER study, a prospective phase II multi-center trial of erlotinib treatment in advanced NSCLC patients with activating EGFR mutations in tumor tissue. 10 CTC preparations from breast cancer patients without EGFR mutations in their primary tumors and 12 blood samples from healthy subjects were analyzed as negative controls. CTC preparations, obtained by the Veridex CellSearch System, were subjected to ultra-deep next generation sequencing (NGS) on the Roche 454 GS junior platform.

Results

CTCs fulfilling all Veridex criteria were present in 41% of the patients examined, ranging in number between 1 and 29. In addition to validated CTCs, potential neoplastic elements were seen in 33 cases. These included cells not fulfilling all Veridex criteria (also known as “suspicious objects”) found in 5 (13%) of 37 cases, and isolated or clustered large naked nuclei with irregular shape observed in 33 (89%) cases. EGFR mutations were identified by NGS in CTC preparations of 31 (84%) patients, corresponding to those present in matching tumor tissue. Twenty-five (96%) of 26 deletions at exon 19 and 6 (55%) of 11 mutations at exon 21 were detectable (P = 0.005). In 4 (13%) cases, multiple EGFR mutations, suggesting CTC heterogeneity, were documented. No mutations were found in control samples.

Conclusions

We report for the first time that the CellSearch System coupled with NGS is a very sensitive and specific diagnostic tool for EGFR mutation analysis in CTC preparations with potential clinical impact.  相似文献   

10.

Background

Adenocarcinomas of the tongue are rare and represent the minority (20 to 25%) of salivary gland tumors affecting the tongue. We investigated the utility of massively parallel sequencing to characterize an adenocarcinoma of the tongue, before and after treatment.

Results

In the pre-treatment tumor we identified 7,629 genes within regions of copy number gain. There were 1,078 genes that exhibited increased expression relative to the blood and unrelated tumors and four genes contained somatic protein-coding mutations. Our analysis suggested the tumor cells were driven by the RET oncogene. Genes whose protein products are targeted by the RET inhibitors sunitinib and sorafenib correlated with being amplified and or highly expressed. Consistent with our observations, administration of sunitinib was associated with stable disease lasting 4 months, after which the lung lesions began to grow. Administration of sorafenib and sulindac provided disease stabilization for an additional 3 months after which the cancer progressed and new lesions appeared. A recurring metastasis possessed 7,288 genes within copy number amplicons, 385 genes exhibiting increased expression relative to other tumors and 9 new somatic protein coding mutations. The observed mutations and amplifications were consistent with therapeutic resistance arising through activation of the MAPK and AKT pathways.

Conclusions

We conclude that complete genomic characterization of a rare tumor has the potential to aid in clinical decision making and identifying therapeutic approaches where no established treatment protocols exist. These results also provide direct in vivo genomic evidence for mutational evolution within a tumor under drug selection and potential mechanisms of drug resistance accrual.  相似文献   

11.
We determined frequency/types of K-ras mutations in colorectal/lung cancer. ADx-K-ras kit (real-time/double-loop probe PCR) was used to detect somatic tumor gene mutations compared with Sanger DNA sequencing using 583 colorectal and 244 lung cancer paraffin-embedded clinical samples. Genomic DNA was used in both methods; mutation rates at codons 12/13 and frequency of each mutation were detected and compared. The data show that 91.4% colorectal and 59.0% lung carcinoma samples were detected conclusively by DNA sequencing, whereas 100% colorectal and lung samples were detected by ADx-K-ras kit. K-ras gene mutations were detected in 32.9–27.4% colorectal samples using kit and sequencing methods, respectively. Whereas 10.6–8.3% lung cancer samples were positively detected by kit and sequencing methods, respectively. Notably, 172/677 showed mutations and 467/677 showed wild type by both methods; 38 samples showed mutations with kit but wild type with sequencing. Mutations in colorectal samples were as follows: GGT → GAT/codon-12 (35.1%); GGC → GAC/codon-13 (26.6%); GGT → GTT/codon-12 (18.2%); and GGT → GCT/codon-12 (1.6%). Mutations in lung samples were as follows: GGT > GTT/codon-12 (40.9%) and GGT > GCT/codon-12 (4.5%). In conclusion, K-ras mutations involved 32.2% colorectal and 10.6% lung samples among this cohort. ADx-K-ras real-time PCR showed higher detection rates (P < 0.05). The kit method has good clinical applicability as it is simple, fast, less prone to contamination and hence can be used effectively and reliably for clinical screening of somatic tumor gene mutations.  相似文献   

12.

Background

Intratumor heterogeneity (ITH) poses an urgent challenge for cancer precision medicine because it can cause drug resistance against cancer target therapy and immunotherapy. The search for trunk mutations that are present in all cancer cells is therefore critical for each patient.

Case presentation

In this study, we aimed to evaluate the efficiency of multiregional sequencing for the identification of trunk mutations present in all regions of a tumor as a case study. We applied multiregional whole-exome sequencing (WES) to investigate the genetic heterogeneity and homogeneity of a case of gastric carcinoma. Approximately 83% of common missense mutations present in two samples and approximately 89% of common missense mutations present in three samples were trunk mutations. Notably, trunk mutations appeared to have higher variant allele frequencies (VAFs) than non-trunk mutations.

Conclusions

Our results indicate that small-scale multiregional sampling and subsequent screening of low VAF somatic mutations might be a cost-effective strategy for identifying the majority of trunk mutations in gastric carcinoma.
  相似文献   

13.

Background

Wilms tumor is the most common pediatric renal malignancy and there is a clinical need for a molecular biomarker to assess treatment response and predict relapse. The known mutated genes in this tumor type show low mutation frequencies, whereas aberrant methylation at 11p15 is by far the most common aberration. We therefore analyzed the epigenome, rather than the genome, to identify ubiquitous tumor-specific biomarkers.

Results

Methylome analysis of matched normal kidney and Wilms tumor identifies 309 preliminary methylation variable positions which we translate into three differentially methylated regions (DMRs) for use as tumor-specific biomarkers. Using two novel algorithms we show that these three DMRs are not confounded by cell type composition. We further show that these DMRs are not methylated in embryonic blastema but are intermediately methylated in Wilms tumor precursor lesions. We validate the biomarker DMRs using two independent sample sets of normal kidney and Wilms tumor and seven Wilms tumor histological subtypes, achieving 100% and 98% correct classification, respectively. As proof-of-principle for clinical utility, we successfully use biomarker DMR-2 in a pilot analysis of cell-free circulating DNA to monitor tumor response during treatment in ten patients.

Conclusions

These findings define the most common methylated regions in Wilms tumor known to date which are not associated with their embryonic origin or precursor stage. We show that this tumor-specific methylated DNA is released into the blood circulation where it can be detected non-invasively showing potential for clinical utility.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0434-y) contains supplementary material, which is available to authorized users.  相似文献   

14.

Introduction

In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI.

Patient and Methods

Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis.

Results

Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively.

Conclusion

One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival.  相似文献   

15.

Background

Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the ultimate marker to measure efficacy of cancer therapy and/ or early recurrence. Herein we present a method for detecting microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations.

Methods and Findings

We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events: heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per >1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways. 1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal human lungs (107 copies of gDNA each) or in blood samples from 10 healthy individuals (107 copies of gDNA each). This is inconsistent, at least at an analytical sensitivity of 10−7, with the hypotheses of (a) hypermutation or (b) strong selection of these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high throughput “gene pool” analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of >0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53 mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others, reflecting tumor progression.

Conclusions

MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and that levels over time are correlated with the clinical course of disease.  相似文献   

16.

Background

Oncogenic mutations are powerful predictive biomarkers for molecularly targeted cancer therapies. For mutation detection patients have to undergo invasive tumor biopsies. Alternatively, archival samples are used which may no longer reflect the actual tumor status. Circulating tumor cells (CTC) could serve as an alternative platform to detect somatic mutations in cancer patients. We sought to develop a sensitive and specific assay to detect mutations in the EGFR gene in CTC from lung cancer patients.

Methods

We developed a novel assay based on real-time polymerase chain reaction (PCR) and melting curve analysis to detect activating EGFR mutations in blood cell fractions enriched in CTC. Non-small-cell lung cancer (NSCLC) was chosen as disease model with reportedly very low CTC counts. The assay was prospectively validated in samples from patients with EGFR-mutant and EGFR-wild type NSCLC treated within a randomized clinical trial. Sequential analyses were conducted to monitor CTC signals during therapy and correlate mutation detection in CTC with treatment outcome.

Results

Assay sensitivity was optimized to enable detection of a single EGFR-mutant CTC/mL peripheral blood. CTC were detected in pretreatment blood samples from all 8 EGFR-mutant lung cancer patients studied. Loss of EGFR-mutant CTC signals correlated with treatment response, and its reoccurrence preceded relapse.

Conclusions

Despite low abundance of CTC in NSCLC oncogenic mutations can be reproducibly detected by applying an unbiased CTC enrichment strategy and highly sensitive PCR and melting curve analysis. This strategy may enable non-invasive, specific biomarker diagnostics and monitoring in patients undergoing targeted cancer therapies.  相似文献   

17.
Point mutations of the K-RAS gene at codon 12 are found in about 40% of cases with colorectal cancer. The diagnostic implications of the detection of these mutations and their clinical utility are still unclear. The aim of this study was to test both the feasibility of the detection of the mutated K-RAS gene in serum and its potential role in colorectal cancer detection and monitoring. Codon 12 K-RAS mutations were examined in DNA extracted from the serum of 35 patients with colorectal cancer and were compared with the K-RAS status in the corresponding primary tumor. Molecular detection was performed by the mutant-enriched PCR (ME-PCR) assay, a sensitive method capable of distinguishing a small quantity of mutated DNA in the presence of abundant wild-type DNA. The occurrence of mutations was compared with clinicopathological parameters as well as CEA and CA19.9 serum levels. We found codon 12 K-RAS mutations in the tissue of 13/35 (37%) patients. Serum mutations were detected in 5/13 (38.5%) patients with mutated K-RAS in the tissue. 26/35 (74%) patients showed an identical K-RAS pattern in tissue and serum. No codon 12 K-RAS alterations were found in serum samples of 22 patients with benign gastrointestinal diseases. Elevated serum CEA levels were detected in 16 patients, four of whom also presented serum RAS mutations. Our results confirm that K-RAS mutations can be found in circulating DNA extracted from serum samples of patients with colorectal cancer and show that there is a correspondence between serum and tissue K-RAS patterns.  相似文献   

18.
Scanning for mutations by DNA melting analysis (DMA) is based on asymmetric PCR followed by the melting of duplexes formed by single-stranded amplicons with TaqMan probes. The method is optimally suited for clinical genetic testing; it is easy to perform, high-throughput, and sensitive. The detection limit of mutant alleles by the DMA method is about 3%, which is much higher than the sensitivity of Sanger sequencing. In addition, the DMA method is realized in a closed-tube format, while 2-h assay is carried out in a single tube without any intermediate or additional procedures thereby minimizing the risk of cross contamination of the samples. The validation of the DMA method was performed by scanning for mutations of clinically significant genes KRAS, NRAS, BRAF, and PIK3CA in 324 DNA samples from tumors of patients with melanoma, colorectal and lung cancer. DNA was isolated either directly from tumor tissues, or from formalin- fixed paraffin-embedded tumor tissues. The detected mutations were verified by Sanger sequencing. The spectra of mutations identified in each tumor type correspond to the literature data and, thus, validate the use of DMA.  相似文献   

19.

Background

Mitochondrial defects have been associated with various human conditions including cancers.

Methods

We analyzed the mutations at the mitochondrial DNA (mtDNA) in patients with different thyroid lesions. In particular, in order to investigate if the accumulation of mtDNA mutations play a role in tumor progression, we studied the highly variable main control region of mtDNA, the displacement-loop (D-loop) in patients with non-tumor nodular goiters, with benign thyroid adenomas, and with malignant thyroid carcinomas. Total thyroid tumor or goiter samples were obtained from 101 patients, matched with nearby normal tissue and blood from the same subject.

Results

Noticeably, mitochondrial microsatellite instability (mtMSI) was detected in 2 of 19 nodular goiters (10.53%), and 8 of 77 (10.39%) malignant thyroid carcinomas. In addition, 6 patients, including 5 (6.49%) with malignant thyroid carcinomas and 1 (5.26%) with nodular goiter, were found to harbor point mutations. The majority of the mutations detected were heteroplasmic.

General significance

Our results indicate that mtDNA alterations in the D-loop region could happen before tumorigenesis in thyroid, and they might also accumulate during tumorigenesis.  相似文献   

20.

Objective

To explore the relationship between TTF-1 and EGFR mutations in lung adenocarcinoma tissues to guide clinical treatment timely and effectively.

Materials and Methods

we collected 664 tissue samples from patients with histologically confirmed lung adenocarcinoma from May 2010 to April 2013. All tumor tissues were collected prior to administering therapy. TTF-1 was detected byimmunohistochemistry and EGFR mutations by DNA direct sequencing. Finally, the correlation between TTF-1 expression and the presence of EGFR mutations was analyzed using χ2 test or Fisher’s exact test with SPSS software version 18.0.

Results

Of the 664 lung adenocarcinoma tissue samples, 18 were partially positive for TTF-1 (+−), and 636 were positive for TTF-1 (+) resulting in a total positive rate of 98.49% (+,+−)(including partial positive). In only 10 cases was the TTF-1 negative (−); the negative rate was 1.51%. There were 402 cases without an EGFR mutation and 262 cases with EGFR mutations; the rate of mutations was 39.46%. The location of the EGFR mutation was exon 19 for 121 cases resulting in a mutation rate in exon 19 of 18.22%. The location of the EGFR mutation was exon 21 for 141 cases resulting in a mutation rate in exon 21 of 21.23%. Exon 18 and 20 detected by DNA direct sequencing no mutations.A Fisher’s exact test was used to determine the correlation between EGFR mutations and TTF-1 expression.for the whole, TTF-1 positive expression(including partial positive) has correlation with EGFR mutations (p<0.001),especially for Exon 21 expression,the correlation is significant (p = 0.008).

Conclusion

In lung adenocarcinomas, positive and partial positive TTF-1 expression has a significant positive correlation with EGFR mutations(exon 19 and 21). In clinical practice, TTF-1 expression combine with EGFR mutations, especially exon 21 mutation can guide clinical treatment timely for lung adenocarcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号