首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cutaneous leishmaniasis (CL) is caused by Leishmania infection of dermal macrophages and is associated with chronic inflammation of the skin. L. aethiopica infection displays two clinical manifestations, firstly ulcerative disease, correlated to a relatively low parasite load in the skin, and secondly non-ulcerative disease in which massive parasite infiltration of the dermis occurs in the absence of ulceration of epidermis. Skin ulceration is linked to a vigorous local inflammatory response within the skin towards infected macrophages. Fas ligand (FasL) and Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expressing cells are present in dermis in ulcerative CL and both death ligands cause apoptosis of keratinocytes in the context of Leishmania infection. In the present report we show a differential expression of FasL and TRAIL in ulcerative and non-ulcerative disease caused by L. aethiopica. In vitro experiments confirmed direct FasL- and TRAIL-induced killing of human keratinocytes in the context of Leishmania-induced inflammatory microenvironment. Systemic neutralisation of FasL and TRAIL reduced ulceration in a model of murine Leishmania infection with no effect on parasitic loads or dissemination. Interestingly, FasL neutralisation reduced neutrophil infiltration into the skin during established infection, suggesting an additional proinflammatory role of FasL in addition to direct keratinocyte killing in the context of parasite-induced skin inflammation. FasL signalling resulting in recruitment of activated neutrophils into dermis may lead to destruction of the basal membrane and thus allow direct FasL mediated killing of exposed keratinocytes in vivo. Based on our results we suggest that therapeutic inhibition of FasL and TRAIL could limit skin pathology during CL.  相似文献   

2.

Background

Cutaneous leishmaniasis (CL) represents a range of skin diseases caused by infection with Leishmania parasites and associated with tissue inflammation and skin ulceration. CL is clinically widespread in both the Old and New World but lacks treatments that are well tolerated, effective and inexpensive. Oleylphosphocholine (OlPC) is a new orally bioavailable drug of the alkylphosphocholine family with potent antileishmanial activity against a broad range of Leishmania species/strains.

Methodology/principal findings

The potential of OlPC against Old World CL was evaluated in a mouse model of Leishmania (L.) major infection in BALB/c mice. Initial dose-response experiments showed that an oral daily dose of 40 mg/kg of OlPC was needed to impact time to cure and lesion sizes. This dose was then used to directly compare the efficacy of OlPC to the efficacy of the antileishmanial drugs miltefosine (40 mg/kg/day), fluconazole (160 mg/kg/day) and amphotericin B (25 mg/kg/day). OlPC, miltefosine and fluconazole were given orally for 21 days while amphotericin B was administered intraperitoneally for 10 days. Ulcer sizes and animal weights were followed up on a weekly basis and parasitemia was determined by means of a real-time in vivo imaging system which detects luminescence emitted from luciferase-expressing infecting L. major parasites. Amphotericin B and OlPC showed excellent efficacy against L. major lesions in terms of reduction of parasitic loads and by inducing complete healing of established lesions. In contrast, treatment with miltefosine did not significantly affect parasitemia and lesion sizes, while fluconazole was completely ineffective at the dose regimen tested.

Conclusions/Significance

Given the data showing the outstanding efficacy and tolerability of OlPC, our results suggest that OlPC is a promising new drug candidate to improve and simplify current clinical management of L. major CL.  相似文献   

3.
Cutaneous leishmaniasis (CL) is one of the most important causes of chronic ulcerative skin lesions. The disease is endemic in many parts of the world, presenting a range of clinical forms - acute, chronic, recurrent and diffuse(1). Several species of Leishmania are involved, including L. major, L. tropica and L. aethiopica in the Old World, and several members of the L. braziliensis and L. mexicana complexes in the New World. Some forms of the disease produce only mild, self-limited lesions, while at the other extreme are the destructive mucocutaneous forms caused by L. braziliensis and L. panamensis(1-7). In all cases, chemotherapy tends to be difficult - often requiring prolonged parenteral administration of toxic drugs such as pentavalent antimonials or amphotericin B. Such drugs are also expensive and relatively inefficient in the sense that much of the active ingredient is excreted by the patient before reaching its target. Consequently, there is renewed interest in the development of active formulations suitable for topical application directly onto the lesions.  相似文献   

4.
DNA- and protein- based vaccines against cutaneous leishmaniasis due to Leishmania major were evaluated using a challenge model that more closely reproduces the pathology and immunity associated with sand fly-transmitted infection. C57BL/6 mice were vaccinated s.c. with a mixture of plasmid DNAs encoding the Leishmania Ags LACK, LmSTI1, and TSA (AgDNA), or with autoclaved L. major promastigotes (ALM) plus rIL-12, and the mice were challenged by inoculation of 100 metacyclic promastigotes in the ear dermis. When challenged at 2 wk postvaccination, mice receiving AgDNA or ALM/rIL-12 were completely protected against the development of dermal lesions, and both groups had a 100-fold reduction in peak dermal parasite loads compared with controls. When challenged at 12 wk, mice vaccinated with ALM/rIL-12 maintained partial protection against dermal lesions and their parasite loads were no longer significantly reduced, whereas the mice vaccinated with AgDNA remained completely protected and had a 1000-fold reduction in dermal parasite loads. Mice vaccinated with AgDNA also harbored few, if any, parasites in the skin during the chronic phase, and their ability to transmit L. major to vector sand flies was completely abrogated. The durable protection in mice vaccinated with AgDNA was associated with the recruitment of both CD8(+) and CD4(+) T cells to the site of intradermal challenge and with IFN-gamma production by CD8(+) T cells in lymph nodes draining the challenge site. These data suggest that under conditions of natural challenge, DNA vaccination has the capacity to confer complete protection against cutaneous leishmaniasis and to prevent the establishment of infection reservoirs.  相似文献   

5.
Cutaneous leishmaniasis (CL) can occur in skin and mucosa, causing disfiguring lesions. The laboratory diagnosis of CL involves immunological methods and optical detection of the parasite, al of which have limitations. There is a need for more effective diagnostic methods for CL which wil allow treatment to be initiated more promptly in order to help prevent the development of severe forms of mucosal disease, and to estimate the prognosis of the infection. The polymerase chain reaction (PCR) has been widely used to diagnose CL, because of its higher sensitivity. This study estimated the accuracy and compared PCRs of samples from lesion scarification (PCR-L) and blood sample-enriched leukocytes (PCR-B) with three conventional diagnostic techniques: parasite direct search (DS), Montenegro skin test (MST), and indirect immunofluorescence reaction (IIF). The study included 276 patients under suspicion of CL. We conducted a cross-sectional study, in which patients were selected by convenience sampling. We used MP3H/MP1L primers to generate a Leishmania (Viannia) (minicircle kDNA) fragment of 70-bp. Of 106 patients with CL, 83.87%, 51.67%, 64.52%, 85.71%, or 96.10% tested positive by PCR-L, PCR-B, DS, IIF, or MST, respectively. Five patients tested positive only by PCR-L, and two other patients only by PCR-B. PCR-L is indicated for use in patients with chronic lesions or Leishmania reinfection, which may progress to mucosal lesion. PCR-B is indicated for use in patients with negative results in conventional tests or for patients with no apparent lesion. PCR is not only useful in diagnosing CL but also helps to identify the infecting species.  相似文献   

6.
Cutaneous leishmaniasis (CL) is an endemic parasitic infection in the Mediterranean region, including Libya and its Al-jabal Al-gharbi province. We aimed at studying the occupational relevance as well as other epidemiological aspects of CL. We investigated 140 CL cases who attended at Gharyan outpatient polyclinic during a period of 6 months in 2009. CL infection was clinically diagnosed and confirmed by demonstration of Leishmania parasites on smears from lesions. Our findings showed that males were more affected than females (P=0.04), and people above 10-years were more affected than younger ones (P=0.0001). A significant percent of CL cases belonged to Al-Kawasem subprovince (P=0.0001). Farm-related activities were the most frequent occupations among CL cases (P=0.04). In addition to farm workers, housewives and students are at risk groups since they are engaged at farm activities. Moreover, those who have occupations that require staying outdoors for a part of night, e.g., policemen, are also at risk. Compared to children, adult CL patients had multiple lesions (P=0.001) that were more prevalent in their upper and lower extremities than the face (P=0.0001). We conclude that CL is a major health problem in Al-jabal Al-gharbi province of Libya. The presence of rodents and sandflies makes it a suitable environment for Leishmania to spread in an endemic epidemiological pattern. Being engaged in farming activities or outdoor occupations increases the risk of infection. Various clinical patterns of CL suggest the presence of more than 1 species of Leishmania at Al-jabal Al-gharbi province. We propose that the 2 species responsible for CL in this area are L. major and L. tropica. Further investigations to identify the leishmanial species responsible for CL at Al-jabal Al-gharbi together with adoption of preventive and control programs are needed.  相似文献   

7.
Cutaneous leishmaniasis, a parasitic infection causing ulcerating skin lesions, is an important disease worldwide and urgently requires a vaccine. Animal models that closely mimic human disease are essential for designing preventive vaccines against Leishmania major. We have evaluated both biologic and immunologic parameters of cutaneous L. major infection in nonhuman primates. Na?ve rhesus macaques or monkeys previously exposed to L. major were infected with varying doses of L. major metacyclic promastigotes, and lesion size was assessed over a 10-week period. Monkeys previously infected with L. major had much smaller lesions that resolved faster compared with those of na?ve monkeys in response to the two higher doses of infection. Moreover, eight of nine na?ve monkeys had parasites detected in their lesions during the course of the infection. In addition, the cellular infiltrate within the lesions was qualitatively and quantitatively different in na?ve versus previously infected monkeys. Finally, an ELIspot assay determined that the magnitude and kinetics of responses differed between previously infected and na?ve monkeys.  相似文献   

8.
Migration inhibitory factor-related protein 8 (MRP8) and MRP14 are expressed by myeloid cells and especially known as marker proteins of an immature and inflammatory subtype of macrophages. In this study, we immunohistochemically examined an accumulation of MRP8+ and MRP14+ macrophages in skin lesions during Leishmania major infection in susceptible BALB/c and RAG-2-/- mice. L. major infection caused the development of a nodular type of skin lesion at the infection site in mice and a massive accumulation of macrophages was observed in the lesions at four weeks after the infection. Immunohistochemical analyses showed MRP8+ and MRP14+ macrophages are predominant cell types in the skin lesions in both mouse strains. In contrast, F4/80+ cells, which correspond to mature macrophages, were rarely found in the skin lesions. These data suggest that the accumulation of inflammatory subtype of macrophages in BALB/c mice during L. major infection can be induced without acquired immune responses.  相似文献   

9.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   

10.
Photodynamic therapy (PDT) is emerging as a therapeutic modality in the clinical management of cutaneous leishmaniasis (CL). The efficacy of PDT against CL has been demonstrated previously with aminolevulinic acid, although the prolonged terms of therapy were less than ideal, and the search for new photosensitizers (PS) is ongoing. However, phenothiaziniums have demonstrated high parasiticidal effects in vitro. The subject of our investigation is the in vivo activity of two PS, 5-ethylamino-9-diethylaminobenzo[a]phenoselenazinium chloride (EtNBSe) and (3,7-Bis(N,N-dibutylamino) phenothiazinium bromide (PPA904). The results of our comparative analysis of the efficacy of these two phenothiazinium analogues demonstrated a high antiparasitic activity of EtNBSe in vitro, and the higher efficacy of PPA904 in a mouse model of CL. The kinetics of photodestruction are different in parasite and mammalian cells, and with both dyes, the macrophages are more susceptible to photodynamic effects than L. major parasites. As the number of parasites in the lesions undergoes a biphasic change, temporarily increasing on days 2-4 and decreasing on days 5-7, more than one treatment is required within an interval of 5 to 7 days. We have also shown that PPA904-PDT can provide an immunomodulating, dose-dependent efflux on IL-12p70 production. This mechanism could be responsible for promoting a more rapid healing in PPA904-PDT treated mice. Our initial data indicate that phenothiaziniums exhibit a high parasiticidal effect in vivo against CL; this finding may be of use in establishing curative PDT regimens for future clinical trials.  相似文献   

11.
12.
Cutaneous leishmaniasis (CL) is an important public health problem in Turkey. CL has been most frequently seen in Sanliurfa. There is an expectation of increase in the population of leishmaniasis cases with the influence of Syrian refugees arriving in Turkey. In this study we aimed to diagnosis of CL and identifying of parasite from Leishmania isolates by using ITS 1 PCR RFLP. Samples were collected from 135 CL patients in Sanliurfa. After the specimens were inoculated in medium NNN, the ones which were cultures positive were cultivated in RPMI 1640 followed by PCR-RFLP. Genomic DNA was extracted phenol-chloroform procedure. Samples were examined by using ITS 1 PCR followed by RFLP analysis. Our results indicated that two species, L. tropica (132 samples) and L. major (3 samples), are responsible for cutaneous leishmaniasis in Sanl?urfa. Our study is the first scientific study in which it is reported molecular analyses of cutaneous leishmaniasis cases caused by L. major in Sanliurfa in Southestern Anatolia Region. Because CL cases caused by L.major are detected in our study, it is considered that genotyping is important for diagnosis of Leishmania and following change of epidemiology.  相似文献   

13.

Background

Cutaneous leishmaniasis (CL) is a vector-borne parasitic disease characterized by the presence of one or more lesions on the skin that usually heal spontaneously after a few months. Most cases of CL worldwide occur in Southwest Asia, Africa and South America, and a number of cases have been reported among troops deployed to Afghanistan. No vaccines are available against this disease, and its treatment relies on chemotherapy. The aim of this study was to characterize parasites isolated from Canadian soldiers at the molecular level and to determine their susceptibility profile against a panel of antileishmanials to identify appropriate therapies.

Methodology/Principal Findings

Parasites were isolated from skin lesions and characterized as Leishmania tropica based on their pulsed field gel electrophoresis profiles and pteridine reductase 1 (PTR1) sequences. Unusually high allelic polymorphisms were observed at several genetic loci for the L. tropica isolates that were characterized. The drug susceptibility profile of intracellular amastigote parasites was determined using an established macrophage assay. All isolates were sensitive to miltefosine, amphotericin B, sodium stibogluconate (Pentostam) and paromomycin, but were not susceptible to fluconazole. Variable levels of susceptibility were observed for the antimalarial agent atovaquone/proguanil (Malarone). Three Canadian soldiers from this study were successfully treated with miltefosine.

Conclusions/Significance

This study shows high heterogeneity between the two L. tropica allelic versions of a gene but despite this, L. tropica isolated from Afghanistan are susceptible to several of the antileishmanial drugs available.  相似文献   

14.
A model of skin infection with Leishmania amazonensis with low doses of parasites is compared to infection with high doses of L. amazonensis and low and high doses of Leishmania major. C57BL/6 mice were infected with 103 or 10(6) parasites in the ear and the outcome of infection was assessed. The appearance of lesions in mice infected with 103 parasites was delayed compared to mice infected with 10(6) Leishmania and parasites were detectable at the infection site before lesions became apparent. Mice infected with L. amazonensis displayed persistent lesions, whereas infection with L. major spontaneously healed in all groups, although lymphocytes persisted at the site of infection after healing. Macrophages persisted only in L. amazonensis-infected mice. High-dose L. amazonensis-infected mice produced lower levels of IFN-γ and TNF than mice infected with L. major. No correlation between the persistence of parasites and IL-10 levels and the production of nitric oxide or urea by macrophages was found. We conclude that infection with low doses of L. amazonensis in the dermis changes the course of infection by delaying the appearance of lesions. However, low-dose infection does not change the outcomes of susceptibility and cytokine production described for subcutaneous infection with high numbers of parasites.  相似文献   

15.
Newborn litters of the L line and CL/Fr and A/JFr strains were examined, and sex, frequency and type of cleft lip (left, right or bilateral) were recorded. Embryos and fetuses from crosses between these strains and line were collected on days 13 to 16 of gestation, and frequency and type of cleft lip recorded. Overall cleft frequencies in L X CL/Fr, CL/Fr X L, and CL/Fr X A/JFr crosses (female stated first) were similar, while in A/JFr X L (10.3%) they were significantly lower than in L X A/JFr (23.3%). The data suggested that the same maternal effect genes were present in CL/Fr and the related L line and absent from A/JFr. In the L, CL/Fr, and A/JFr newborns, there was a tendency for males to have higher frequencies of cleft lip and bilateral cleft lip and the latter was significant for L. Left cleft lip frequency was significantly higher than right for L and CL/Fr newborns and in embryos of the CL/Fr X L and L X CL/Fr cross. No significant differences in laterality were found in the A/JFr strain, A/JFr X L, L X A/JFr, and CL/Fr X A/JFr crosses. It was concluded that (1) the embryonic and maternal effect genes for cleft lip are similar or identical in CL/Fr and L; and (2) using data from the literature, there are additional genetic factor(s) increasing left cleft lip occurrence acting in the embryo, which are present in CL/Fr, L, A/HeJ, A/He, and A/St and absent from A/JKt, A/J, A/JFr, and A/WySn.  相似文献   

16.
The effect of adoptive transfer of in vitro-propagated Leishmania major-specific T cell populations on the course of experimentally induced cutaneous leishmaniasis was studied in mice. The L. major-specific T cells expressed the T helper/inducer phenotype and were able in vitro to a) mount a specific proliferative response, b) provide specific helper activity for antibody responses, c) activate parasitized macrophages resulting in L. major destruction, and d) secrete macrophage-activating factors as tested in a tumoricidal assay. These T cells were also found capable of transferring parasite-specific delayed-type hypersensitivity responses to normal syngeneic mice. Results indicated that the i.v. transfer of these L. major-specific T cell populations into normal syngeneic mice exacerbated cutaneous lesions induced by infection with L. major. This effect on the disease process appeared to be dependent upon recognition of parasite antigens by the injected T cells because no exacerbation of the disease process was seen after the transfer of similar T cell populations specific for an antigen unrelated to the parasite, namely ovalbumin. However, the inclusion of ovalbumin in the L. major infecting inoculum resulted in an exacerbating effect of ovalbumin-specific T cells on cutaneous leishmaniasis. These unexpected results were supported by observations showing that immunization of mice with L. major antigens in complete Freund's adjuvant 7 days before infection with L. major led to exacerbated lesions. A similar aggravation of L. major-induced cutaneous lesions was also observed in mice previously immunized with an unrelated antigen provided that this antigen was included in the L. major infecting inoculum.  相似文献   

17.

Background

Anthroponotic cutaneous leishmaniasis (CL) due to Leishmania (L.) tropica infection is a chronic, frequently disfiguring skin disease with limited therapeutic options. In endemic countries healing of ulcerative lesions is often delayed by bacterial and/or fungal infections. Here, we studied a novel therapeutic concept to prevent superinfections, accelerate wound closure, and improve the cosmetic outcome of ACL.

Methodology/Principal Findings

From 2004 to 2008 we performed a two-armed, randomized, double-blinded, phase IIa trial in Kabul, Afghanistan, with patients suffering from L. tropica CL. The skin lesions were treated with bipolar high-frequency electrocauterization (EC) followed by daily moist-wound-treatment (MWT) with polyacrylate hydrogel with (group I) or without (group II) pharmaceutical sodium chlorite (DAC N-055). Patients below age 5, with facial lesions, pregnancy, or serious comorbidities were excluded. The primary, photodocumented outcome was the time needed for complete lesion epithelialization. Biopsies for parasitological and (immuno)histopathological analyses were taken prior to EC (1st), after wound closure (2nd) and after 6 months (3rd). The mean duration for complete wound closure was short and indifferent in group I (59 patients, 43.1 d) and II (54 patients, 42 d; p = 0.83). In patients with Leishmania-positive 2nd biopsies DAC N-055 caused a more rapid wound epithelialization (37.2 d vs. 58.3 d; p = 0.08). Superinfections occurred in both groups at the same rate (8.8%). Except for one patient, reulcerations (10.2% in group I, 18.5% in group II; p = 0.158) were confined to cases with persistent high parasite loads after healing. In vitro, DAC N-055 showed a leishmanicidal effect on pro- and amastigotes.

Conclusions/Significance

Compared to previous results with intralesional antimony injections, the EC plus MWT protocol led to more rapid wound closure. The tentatively lower rate of relapses and the acceleration of wound closure in a subgroup of patients with parasite persistence warrant future studies on the activity of DAC N-055.

Trial Registration

ClinicalTrails.gov NCT00947362  相似文献   

18.
Leishmania isolates from 57 cases of human cutaneous (CL), human visceral (VL), and canine visceral (CVL) leishmaniasis in Turkey were grouped by multi-site DNA polymorphism analyses into five genotypes. The initial grouping was based on DNA heterogeneity of the faster-evolving mitochondrion (kinetoplast) minicircles and the intergenic regions of two nuclear repetitive genes. Taxonomic affiliation and phylogenetic relationships of the five genotypes were inferred by comparing them with reference species for sequence heterogeneity in a approximately 1.4 kb conserved single-copy gene, encoding N-acetylglucosamine-1-phosphate transferase (NAGT). Alignment of the available sequences revealed no gap, but up to 7% scattered base substitutions, suggesting that this functionally important gene is a suitable marker. Three genotypes are completely identical to the NAGTs of the reference species, identifying them as L. infantum, L. tropica. and L. major, respectively. The remaining two are recognized as L. major NAGT variants with one and four base substitutions, respectively. As expected, Maximum Likelihood analysis of the NAGT sequences separates them into three clades, corresponding to the three species. The majority of the isolates obtained are L. infantum and L. tropica, which have been known to cause infantile VL and anthroponotic CL in western and southeastern Turkey, respectively. Unexpected is the finding of Leishmania major variants and their dispersal, possibly as previously unrecognized clinico-epidemiologic entities of CL and VL.  相似文献   

19.
Cutaneous leishmaniasis (CL) in Morocco is caused by three species, Leishmania major, L. tropica and L. infantum. CL has been known in Chichaoua province since 2000. Using DNA extracted from microscopic slides and parasite cultures, collected in the years 2006 and 2009, we identified for the first time L. tropica as the causative agent of CL in this region. Species identification was achieved by performing the ITS1-PCR-RFLP approach. By using this method it was possible to identify parasites in Giemsa stained slides containing less than five parasites per oil-immersion field even they were conserved for up to four months.  相似文献   

20.
Cutaneous leishmaniasis (CL) is a vector-borne parasitic disease of the skin. Previous open controlled studies with oral itraconazole suggest that it was effective for CL in India. Twenty patients with localised CL participated in this trial. Patients were allocated randomly to receive capsule itraconazole and matching placebo for 6 weeks. No topical medicines were used. Demonstration of Leishmania by slit smear was mandatory. Prior to, periodically during and 3 months after completion of therapy an overall clinical assessment, liver function tests and urinalysis were performed. On decoding, out of the 10 cases receiving drug itraconazole, 7 were declared cured by clinical and parasitological criteria. No major side-effects were noted. Spontaneous remission was observed in 1 case in the placebo group at 3 months follow up. Oral itraconazole has a promising antileishmanial potential and may thus secure CL patient from the hazards of antimonials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号