首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aims of this work were to characterize and improve cellulose production by a Gluconoacetobacter xylinus strain isolated from Kombucha and determine the purity and some structural features of the cellulose from this strain. Cellulose yield in tea medium with both black tea and green tea and in Hestrin and Schramm (HS) medium under both static and agitated cultures was compared. In the tea medium, the highest cellulose yield was obtained with green tea (~0.20 g/L) rather than black tea (~0.14 g/L). Yield in HS was higher (~0.28 g/L) but did not differ between static and agitated incubation. 1H-NMR and 13C-NMR spectroscopy indicated that the cellulose is pure (free of acetan) and has high crystallinity, respectively. Cellulose yield was improved by changing the type and level of carbon and nitrogen source in the HS medium. A high yield of ~2.64 g/L was obtained with mannitol at 20 g/L and corn steep liquor at 40 g/L in combination. In the tea medium, tea at a level of 3 g/L gave the highest cellulose yield and the addition of 3 g/L of tea to the HS medium increased cellulose yield to 3.34 g/L. In conclusion, the G. xylinus strain from Kombucha had different cellulose-producing characteristics than previous strains isolated from fruit. Cellulose was produced in a pure form and showed high potential applicability. Our studies extensively characterized cellulose production from a G. xylinus strain from Kombucha for the first time, indicating both similarities and differences to strains from different sources.  相似文献   

2.
This study attempted to prepare a single cellulose nanofiber, "nanocellulose", dispersed in water from 3D networks of nanofibers in microbial cellulose pellicle using aqueous counter collision (ACC), which allows biobased materials to be down-sized into nano-objects only using water jets without chemical modification. The nanocellulose thus prepared exhibited unique morphological properties. In particular, the width of the nanocellulose, which could be controlled as desired on nanoscales, was smaller than that of just secreted cellulose nanofiber, resulting in larger specific surface areas. Moreover, ACC treatment transformed cellulose I(α) crystalline phase into cellulose I(β) phase with the crystallinity kept >70%. In this way, ACC method depending on the treatment condition could provide the desired fiber width at the nanoscale and the different ratios of the two crystalline allomorphs between cellulose I(α) versus I(β), which thus opens further pathways into versatile applications as biodegradable single nanofibers.  相似文献   

3.
Gluconacetobacter xylinus (=Acetobacter xylinum) shows variety in acid formation from sugars and sugar-alcohols. Toyosaki et al. proposed new subspecies of G. xylinus (=Acetobacter xylinum) subsp. sucrofermentans in point of acid formation from sucrose and a homology index of 58.2% with the type strain of G. xylinus subsp. xylinus in DNA-DNA hybridization experiments. We tried DNA-DNA hybridization to clarify relationship between acid formation from sugars and classification of G. xylinus. The G + C contents of G. xylinus showed 60.1-62.4 mol% with a range of 2.3 mol%. When type strains of G. xylinus subsp. xylinus, G. xylinus subsp. sucrofermentans, and IFO 3288 forming acid from sucrose, were used as probes, the DNAs from three strains showed 67-100%, 64-89%, and 60-100% similarity to those from sixteen strains including bacteria that form acid from sucrose or not. These results show that homology indexes do not reflect differences of acid formation from sucrose. As a results, the species G. xylinus was proved to be genetically homogeneous.  相似文献   

4.
This study reinvestigated the synthesis of cellulose in vitro with a well-known cellulose-producing bacterium, Gluconacetobacter xylinus. Alkylmaltoside detergents, which are more frequently used in recent structural biological researches, are uniquely used in this study to solubilize cellulose-synthesizing activity from the cell membrane of G. xylinus. Activity comparable to that previously reported is obtained, while the synthesized cellulose is crystallized into a non-native polymorph of cellulose (cellulose II) as well as the previous studies. In spite of this failure to recover the native activity to synthesize cellulose I microfibril in vitro, the product is a polymer with a degree of polymerization greater than 45 as determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). It was thus concluded that the established protocol can solubilize cellulose-synthesizing activity of G. xylinus with polymerizing activity.  相似文献   

5.
6.
A microbial colony that contained a marked amount of cellulose was isolated from vineyard soil. The colony was formed by the associated growth of two bacterial strains: a cellulose-producing acetic acid bacterium (st-60-12) and a lactic acid bacterium (st-20). The 16S rDNA-based taxonomy indicated that st-60-12 belonged to Gluconacetobacter xylinus and st-20 was closely related to Lactobacillus mali. Cocultivation of the two organisms in corn steep liquor/sucrose liquid medium resulted in a threefold higher cellulose yield when compared to the st-60-12 monoculture. A similar enhancement was observed in a coculture with various L. mali strains but not with other Lactobacillus spp. The enhancement of cellulose production was most remarkable when sucrose was supplied as the substrate. L. mali mutants for exocellular polysaccharide (EPS) production were defective in promoting cellulose production, but the addition of EPS to the monoculture of st-60-12 did not affect cellulose productivity. Scanning electron microscopic observation of the coculture revealed frequent association between the st-60-12 and L. mali cells. These results indicate that cell–cell interaction assisted by the EPS-producing L. mali promotes cellulose production in st-60-12.The nucleotide sequences of 16S rDNA that are reported in this paper were submitted to GenBank/EMBL/DDBJ under the accession numbers AB016864 (st-20) and AB016865 (st-60-12).  相似文献   

7.
Chemical modulators are powerful tools to investigate biological processes. To identify circadian clock effectors, we screened a natural product library in the model plant Arabidopsis thaliana. Two compounds, prieurianin (Pri) and prieurianin acetate, were identified as causing a shorter circadian period. Recently, Pri was independently identified as a vesicle trafficking inhibitor and re-named endosidin 1 (ES1). Here we show that Pri primarily affects actin filament flexibility in vivo, later resulting in reduced severing and filament depolymerization. This stabilization of the actin cytoskeleton subsequently causes changes in vesicle trafficking. Pri also affected microfilaments in mammalian cells, indicating that its target is highly conserved; however, it did not alter actin dynamics in vitro, suggesting that its activity requires the presence of actin-associated proteins. Furthermore, well-characterized actin inhibitors shortened the period length of the Arabidopsis clock in a similar way to Pri, supporting the idea that Pri affects rhythms by altering the actin network. We conclude that actin-associated processes influence the circadian system in a light-dependent manner, but their disruption does not abolish rhythmicity. In summary, we propose that the primary effect of Pri is to stabilize the actin cytoskeleton system, thereby affecting endosome trafficking. Pri appears to stabilize actin filaments by a different mechanism from previously described inhibitors, and will be a useful tool to study actin-related cellular processes.  相似文献   

8.
The receptor tyrosine kinase Met is crucial for the genetic program causing cancer progression and metastasis. Its nodal function during aggressiveness and resistance acquisition poses Met inhibition as an obligatory step in anti-cancer targeted therapy. Here, we applied a “Met-focussed” forward chemical biological screen to discover new agents antagonizing Met-triggered biological functions. The identified new scaffold, JLK1360, has a dual mechanism of action towards Met: it impairs Met signalling and also prevents its restoration after degradation. Docking and molecular dynamics provide evidences on the interacting mode of JLK1360 within the Met ATP-binding pocket. Moreover, computational and biochemical studies also highlighted that JLK1360 has a good degree of selectivity towards Met than other RTKs tested. Altogether, these findings demonstrate that the approach we have applied is a powerful strategy to identify compounds with combined properties towards a chosen target. Our studies show how integration of chemistry, biology and computational analysis can provide robust strategies to identify new inhibitory scaffolds suitable for further development of anti-cancer targeted therapies.  相似文献   

9.
Gluconacetobacter xylinus is involved in the industrial production of cellulose. We have determined the genome sequence of G. xylinus NBRC 3288, a cellulose-nonproducing strain. Comparative analysis of genomes of G. xylinus NBRC 3288 with those of the cellulose-producing strains clarified the genes important for cellulose production in Gluconacetobacter.  相似文献   

10.
Koh B  Crews CM 《Neuron》2002,36(4):563-566
Chemical genetics, or the specific modulation of cellular systems by small molecules, has complemented classical genetic analysis throughout the history of neurobiology. We outline several of its contributions to the understanding of ion channel biology, heat and cold signal transduction, sleep and diurnal rhythm regulation, effects of immunophilin ligands, and cell surface oligosaccharides with respect to neurobiology.  相似文献   

11.
In screening a library of natural and synthetic products for eukaryotic translation modulators, we identified two natural products, isohymenialdisine and hymenialdisine, that exhibit stimulatory effects on translation. The characterization of these compounds led to the insight that mRNA used to program the translation extracts during high-throughput assay setup was leading to phosphorylation of eIF2α, a potent negative regulatory event that is mediated by one of four kinases. We identified double-stranded RNA-dependent protein kinase (PKR) as the eIF2α kinase that was being activated by exogenously added mRNA template. Characterization of the mode of action of isohymenialdisine revealed that it directly acts on PKR by inhibiting autophosphorylation, perturbs the PKR–eIF2α phosphorylation axis, and can be modeled into the PKR ATP binding site. Our results identify a source of “false positives” for high-throughput screen campaigns using translation extracts, raising a cautionary note for this type of screen.  相似文献   

12.
The present study demonstrates the ability to produce green biocellulose nanofibers using the renewable resources of agriculture residues. Locally grown wheat straws (WS) were hydrolyzed under different conditions. Their hydrolysates were utilized to produce the nanofibers in separate hydrolysis fermentation process by Gluconacetobacter xylinus strain bacterium. Highest biocellulose production of ~10.6 g/L was achieved with samples that were enzymatically hydrolyzed. Moreover, acidic hydrolyzed WS produced up to 9.7 g/L, with total sugar concentrations in culture media of 43 g/L. Generally, enzymatic hydrolysis of WS resulted in more total sugar concentration than the acidic hydrolysis (i.e., 52.12 g/L), while water hydrolysis produced the least. This can be related to utilizing Xylanase in addition to Cellulase and Beta-glucosidase that helps to hydrolyse WS dry basis of cellulose and hemicelluloses. Sugar mixtures produced under all hydrolysis conditions were mainly composed of glucose and xylose with average percentages of 56 and 28 %, respectively. Acidic hydrolysis at higher acid concentration, as well as soaking WS in the acidic solution for longer time, improved the total sugar concentration in the culture media by 18 %. Conducting thermal treatment at more intense conditions of higher temperature or heating time improved the total sugar produced with acidic hydrolysis. These conditions, however, resulted in further production of furfural, which considerably affected bacterial cells proliferation. This resulted in lowest sugar consumption in the range of 62–64 % that affected final BC production.  相似文献   

13.
Liu  Miao  Li  Siqi  Xie  Yongzhen  Jia  Shiru  Hou  Ying  Zou  Yang  Zhong  Cheng 《Applied microbiology and biotechnology》2018,102(3):1155-1165
Applied Microbiology and Biotechnology - Oxygen plays a key role during bacterial cellulose (BC) biosynthesis by Gluconacetobacter xylinus. In this study, the Vitreoscilla hemoglobin (VHb)-encoding...  相似文献   

14.
15.
In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l−1 acetic acid, the optimal xylose concentration for BC production was 20 g l−1. In the medium containing 20 g l−1 xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l−1) was obtained in the medium containing 20 g l−1 xylose and 3 g l−1 acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l−1) in the medium only containing 20 g l−1 xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.  相似文献   

16.
The influence of substrate composition on the yield, nature, and composition of exopolysaccharides (EPS) produced by the food-grade strain Gluconacetobacter xylinus I-2281 was investigated during controlled cultivations on mixed substrates containing acetate and either glucose, sucrose, or fructose. Enzymatic activity analysis and acid hydrolysis revealed that two EPS, gluconacetan and levan, were produced by G. xylinus. In contrast to other acetic acid strains, no exocellulose formation has been measured. Considerable differences in metabolite yields have been observed with regard to the carbohydrate source. It was shown that glucose was inadequate for EPS production since most of this substrate (0.84 C-mol/C-mol) was oxidized into gluconic acid, 2-ketogluconic acid, and 5-ketogluconic acid. In contrast, sucrose and fructose supported a 0.35 C-mol/C-mol gluconacetan yield. In addition, growing G. xylinus on sucrose produced a 0.07 C-mol/C-mol levan yield. The composition of EPS remained unchanged during the course of the fermentations. Levan sucrase activity was found to be mainly membrane associated. In addition to levan production, an analysis of levan sucrase's activity also explained the formation of glucose oxides during fermentation on sucrose through the release of glucose. The biosynthetic pathway of gluconacetan synthesis has also been explored. Although the activity of key enzymes showed large differences to be a function of the carbon source, the ratio of their activities remained similar from one carbon source to another and corresponded to the ratio of precursor needs as deduced from the gluconacetan composition.  相似文献   

17.
The influence of substrate composition on the yield, nature, and composition of exopolysaccharides (EPS) produced by the food-grade strain Gluconacetobacter xylinus I-2281 was investigated during controlled cultivations on mixed substrates containing acetate and either glucose, sucrose, or fructose. Enzymatic activity analysis and acid hydrolysis revealed that two EPS, gluconacetan and levan, were produced by G. xylinus. In contrast to other acetic acid strains, no exocellulose formation has been measured. Considerable differences in metabolite yields have been observed with regard to the carbohydrate source. It was shown that glucose was inadequate for EPS production since most of this substrate (0.84 C-mol/C-mol) was oxidized into gluconic acid, 2-ketogluconic acid, and 5-ketogluconic acid. In contrast, sucrose and fructose supported a 0.35 C-mol/C-mol gluconacetan yield. In addition, growing G. xylinus on sucrose produced a 0.07 C-mol/C-mol levan yield. The composition of EPS remained unchanged during the course of the fermentations. Levan sucrase activity was found to be mainly membrane associated. In addition to levan production, an analysis of levan sucrase's activity also explained the formation of glucose oxides during fermentation on sucrose through the release of glucose. The biosynthetic pathway of gluconacetan synthesis has also been explored. Although the activity of key enzymes showed large differences to be a function of the carbon source, the ratio of their activities remained similar from one carbon source to another and corresponded to the ratio of precursor needs as deduced from the gluconacetan composition.  相似文献   

18.
The development of bacterial cellulose (BC) fibrils biosynthesized by Gluconacetobacter xylinus was investigated using atomic force microscopy (AFM). After various incubation times at 30 °C, both the length of BC fibrils and their average diameters increased significantly. After the first 2-h incubation, not only single BC microfibrils with an average diameter of 5.8?±?0.7 nm were biosynthesized but single microfibrils also began to bind with each other forming bundles. After longer incubation times of 6 h, 16 h, and 48 h, only BC bundles and ribbons or even only ribbons were detectable. The development of BC fibrils and the formation of BC bundles/ribbons along with the biosynthesis time were illustrated using AFM. Furthermore, single BC fibrils were twisted in a right-handed manner. The twisting of BC fibrils possibly promoted the formation of bigger ribbons.  相似文献   

19.
A novel small molecule inhibitor of human cytomegalovirus (HCMV) was identified as the result of screening a chemical library by using a whole-virus infected-cell assay. Synthetic chemistry efforts yielded the analog designated CFI02, a compound whose potency had been increased about 100-fold over an initial inhibitor. The inhibitory concentration of CFI02 in various assays is in the low nanomolar range. CFI02 is a selective and potent inhibitor of HCMV; it has no activity against other CMVs, alphaherpesviruses, or unrelated viruses. Mechanism-of-action studies indicate that CFI02 acts very early in the replication cycle, inhibiting virion envelope fusion with the cell plasma membrane. Mutants resistant to CFI02 have mutations in the abundant virion envelope glycoprotein B that are sufficient to confer resistance. Taken together, the data suggest that CFI02 inhibits glycoprotein B-mediated HCMV virion fusion. Furthermore, CFI02 inhibits the cell-cell spread of HCMV. This is the first study of a potent and selective small molecule inhibitor of CMV fusion and cell-cell spread.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号