共查询到20条相似文献,搜索用时 0 毫秒
1.
Loss of protein kinase PKR expression in human HeLa cells complements the vaccinia virus E3L deletion mutant phenotype by restoration of viral protein synthesis 总被引:1,自引:2,他引:1 下载免费PDF全文
The E3L proteins encoded by vaccinia virus bind double-stranded RNA and mediate interferon resistance, promote virus growth, and impair virus-mediated apoptosis. Among the cellular proteins implicated as targets of E3L is the protein kinase regulated by RNA (PKR). To test in human cells the role of PKR in conferring the E3L mutant phenotype, HeLa cells stably deficient in PKR generated by an RNA interference-silencing strategy were compared to parental and control knockdown cells following infection with either an E3L deletion mutant (ΔE3L) or wild-type (WT) virus. The growth yields of WT virus were comparable in PKR-sufficient and -deficient cells. By contrast, the single-cycle yield of ΔE3L virus was increased by nearly 2 log10 in PKR-deficient cells over the impaired growth in PKR-sufficient cells. Furthermore, virus-induced apoptosis characteristic of the ΔE3L mutant in PKR-sufficient cells was effectively abolished in PKR-deficient HeLa cells. The viral protein synthesis pattern was altered in ΔE3L-infected PKR-sufficient cells, characterized by an inhibition of late viral protein expression, whereas in PKR-deficient cells, late protein accumulation was restored. Phosphorylation of both PKR and the α subunit of protein synthesis initiation factor 2 (eIF-2α) was elevated severalfold in ΔE3L-infected PKR-sufficient, but not PKR-deficient, cells. WT virus did not significantly increase PKR or eIF-2α phosphorylation in either PKR-sufficient or -deficient cells, both of which supported efficient WT viral protein production. Finally, apoptosis induced by infection of PKR-sufficient HeLa cells with ΔE3L virus was blocked by a caspase antagonist, but mutant virus growth was not rescued, suggesting that translation inhibition rather than apoptosis activation is a principal factor limiting virus growth. 相似文献
2.
Ribosomal protein phosphorylation was investigated in Ehrlich ascites tumor cells infected with vaccinia virus (Copenhagen strain). After 90 min of simultaneous infection and 32P-labelling, ribosomal proteins Sa, S2 and S13 appear specifically phosphorylated as well as Sb/La, P1 and S6, which are also phosphorylated in control cells. Sa is an acidic protein, whose phosphorylation has not been observed previously. A kinetic study showed that S2 is phosphorylated very rapidly within 10 min after the beginning of infection and it is complete 1 h later. The phosphorylation of S13 begins after a lag time of about 1 h and is completed after about 2.5 h of infection. Moreover only one phosphate is incorporated into S13 on a serine residue while up to four phosphates are incorporated into S2, the first on a serine and the three following on threonine residues. In vivo experiments, carried out in the presence of cycloheximide and cordycepin, suggest a viral origin for the kinase involved in the phosphorylation of S2 and S13. Moreover, in vitro experiments demonstrated that the kinase associated with the viral cores is capable of phosphorylating S2 on a serine residue only. In our cell/virus system, no significant difference in S6 phosphorylation was detected, when compared to uninfected cells. It is concluded that the specific and efficient phosphorylation of three ribosomal proteins from the 40S ribosomal subunit correlate well with possible translational mechanisms ensuring the efficient expression of early and late genes of vaccinia virus. In the light of these and previous results [Person, A. and Beaud, G. (1986) J. Biol. Chem. 261, 8283-8289], a mechanism is proposed for the shut-off of host protein synthesis and the selective translation of mRNAs of viral origin. 相似文献
3.
Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro. 下载免费PDF全文
A screening for human proteins capable of interacting with influenza virus NS1 has been carried out using the two-hybrid genetic trap in yeast. A cDNA corresponding to the human homologue of Drosophila melanogaster Staufen protein (hStaufen) was isolated that fulfilled all genetic controls of the two-hybrid protocol. Using a hStaufen cDNA isolated from a lambda human library, the interaction of hStaufen and NS1 proteins was characterised in vivo and in vitro. Co-transfection of NS1 cDNA and a partial cDNA of hStaufen led to the relocalisation of recombinant hStaufen protein from its normal accumulation site in the cytoplasm to the nuclear location of NS1 protein. NS1 and hStaufen proteins could be co-immunoprecipitated from extracts of co-transfected cells and from mixtures of extracts containing either protein, as well as from extracts of influenza virus-infected cells. Furthermore, both proteins co-localised in the ribosomal and polysomal fractions of influenza virus-infected cells. The interaction was also detected in pull-down experiments using a resin containing purified hStaufen and NS1 protein translated in vitro. Deletion mapping of the NS1 gene indicated that a mutant protein containing the N-terminal 81 amino acids is unable to interact with hStaufen, in spite of retaining full RNA-binding capacity. These results are discussed in relation to the possible mechanisms of action of hStaufen and its relevance for influenza virus infection. 相似文献
4.
Analysis of an influenza A virus mutant with a deletion in the NS segment. 总被引:2,自引:2,他引:0 下载免费PDF全文
The influenza virus host range mutant CR43-3, derived by recombination from the A/Alaska/6/77 and the cold-adapted and temperature-sensitive A/Ann Arbor/6/60 viruses, has previously been shown to possess a defect in the NS gene. To characterize this defect, nucleotide sequence data were obtained from cloned cDNAs. The CR43-3 NS gene was found to be 854 nucleotides long and to derive from the NS gene of the A/Alaska/6/77 parent virus by an internal deletion of 36 nucleotides. Direct sequencing of RNA 8 of CR43-3 virus confirmed that the deletion in the NS1-coding region was not an artifact that was generated during the cloning procedure. Protein analysis indicated that the NS1 protein of CR43-3 virus was synthesized in equal amounts in the restrictive (MDCK) cells as well as in the permissive (PCK) host cells. Also, indirect immunofluorescence studies of virus-infected cells showed that the NS1 protein of CR43-3 virus, like that of the parent viruses, accumulates in the nuclei of both cell systems. Although no differences in synthesis or localization of the NS1 protein could be detected, a consistent reduction in M1 protein was noted in CR43-3 virus-infected, nonpermissive cells as compared with that of the permissive host. Since analysis of the CR43-3 virus required us to obtain the NS nucleotide sequence of the 1977 isolate A/Alaska/6/77, we were able to compare this sequence with those of corresponding genes of earlier strains. The result of this analysis supports the idea of a common lineage of human influenza A viruses isolated over a 43-year period. 相似文献
5.
Vaccinia virus with the E3L gene deleted was able to replicate in RK-13 but not HeLa cells. This host range phenotype could be complemented by an E3L gene expressed transiently from a plasmid. Analysis of mutants of E3L indicates that the ability to complement deletion of E3L correlates with the ability of mutated proteins to bind double-stranded RNA but not with their ability to migrate to the nucleus. 相似文献
6.
Complementation of vaccinia virus lacking the double-stranded RNA-binding protein gene E3L by human cytomegalovirus 下载免费PDF全文
The cellular response to viral infection often includes activation of pathways that shut off protein synthesis and thereby inhibit viral replication. In order to enable efficient replication, many viruses carry genes such as the E3L gene of vaccinia virus that counteract these host antiviral pathways. Vaccinia virus from which the E3L gene has been deleted (VVDeltaE3L) is highly sensitive to interferon and exhibits a restricted host range, replicating very inefficiently in many cell types, including human fibroblast and U373MG cells. To determine whether human cytomegalovirus (CMV) has a mechanism for preventing translational shutoff, we evaluated the ability of CMV to complement the deficiencies in replication and protein synthesis associated with VVDeltaE3L. CMV, but not UV-inactivated CMV, rescued VVDeltaE3L late gene expression and replication. Thus, complementation of the VVDeltaE3L defect appears to depend on de novo CMV gene expression and is not likely a result of CMV binding to the cell receptor or of a virion structural protein. CMV rescued VVDeltaE3L late gene expression even in the presence of ganciclovir, indicating that CMV late gene expression is not required for complementation of VVDeltaE3L. The striking decrease in overall translation after infection with VVDeltaE3L was prevented by prior infection with CMV. Finally, CMV blocked both the induction of eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation and activation of RNase L by VVDeltaE3L. These results suggest that CMV has one or more immediate-early or early genes that ensure maintenance of a high protein synthetic capacity during infection by preventing activation of the PKR/eIF2alpha phosphorylation and 2-5A oligoadenylate synthetase/RNase L pathways. 相似文献
7.
A carboxy-terminal epitope tag introduced into the coding region of the A/WSN/33 M2 protein resulted in a recombinant virus (rWSN M2myc) which replicated to titers similar to those of the parental virus (rWSN) in MDCK cells. The rWSN M2myc virus was attenuated in its ability to induce mortality and weight loss after the intranasal inoculation of BALB/c mice, indicating that the M2 cytoplasmic tail plays a role in virus virulence. Mice infected with rWSN M2myc were completely protected from subsequent challenge with rWSN, suggesting that epitope tagging of the M2 protein may be a useful way of attenuating influenza A virus strains. 相似文献
8.
Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein 总被引:14,自引:0,他引:14 下载免费PDF全文
Talon J Horvath CM Polley R Basler CF Muster T Palese P García-Sastre A 《Journal of virology》2000,74(17):7989-7996
We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses. 相似文献
9.
近年来A型流感严重威胁着人类和畜禽的健康,随着研究的深入,人们已经发现A型流感病毒的NS1蛋白对病毒毒力有重要影响,是一个多功能毒力因子、宿主细胞抗病毒免疫抑制子。根据其功能的不同分为效应区和RNA结合域。目前NS1蛋白结构已经解析,使人们可以直观的认识其各个功能位点的作用机制。该文综述了NS1蛋白的结构特征、已知的功能位点及其功能,为在结构水平上研究NS1蛋白的功能提供参考。 相似文献
10.
Hanwei Jiao Li Du Yongchang Hao Ying Cheng Jing Luo Wenhua Kuang Donglin Zhang Ming Lei Xiaoxiao Jia Xiaoru Zhang Chao Qi Hongxuan He Fengyang Wang 《Folia microbiologica》2013,58(4):335-342
Avian influenza has emerged as a devastating disease and may cross species barrier and adapt to a new host, causing enormous economic loss and great public health threats, and non-structural protein 1 (NS1) is a multifunctional non-structural protein of avian influenza virus (AIV) that counters cellular antiviral activities and is a virulence factor. RNA interference (RNAi) provides a powerful promising approach to inhibit viral infection specifically. To explore the possibility of using RNAi as a strategy against AIV infection, after the fusion protein expression plasmids pNS1-enhanced green fluorescent protein (EGFP), which contain the EGFP reporter gene and AIV NS1 as silencing target, were constructed and NS1-EGFP fusion protein expressing HEK293 cell lines were established, four small interfering RNAs (siRNAs) targeting NS1 gene were designed, synthesized, and used to transfect the stable cell lines. Flow cytometry, real-time quantitative polymerase chain reaction, and Western blot were performed to assess the expression level of NS1. The results suggested that sequence-dependent specific siRNAs effectively inhibited mRNA accumulation and protein expression of AIV NS1 in vitro. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for AIV infection. 相似文献
11.
Expression of dengue virus structural proteins and nonstructural protein NS1 by a recombinant vaccinia virus. 总被引:4,自引:12,他引:4 下载免费PDF全文
B T Zhao G Prince R Horswood K Eckels P Summers R Chanock C J Lai 《Journal of virology》1987,61(12):4019-4022
A recombinant vaccinia virus containing cloned DNA sequences coding for the three structural proteins and nonstructural proteins NS1 and NS2a of dengue type 4 virus was constructed. Infection of CV-1 cells with this recombinant virus produced dengue virus structural proteins as well as the nonstructural protein NS1. These proteins were precipitated by specific antisera and exhibited the same molecular size and glycosylation patterns as authentic dengue virus proteins. Infection of cotton rats with the recombinant virus induced NS1 antibodies in 1 of 11 animals. However, an immune response to the PreM and E glycoproteins was not detected. A reduced level of gene expression was probably the reason for the limited serologic response to these dengue virus antigens. 相似文献
12.
13.
14.
Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel alpha-helices. dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.Cell Research (2009) 19:187-195. doi: 10.1038/cr.2008.288; published online 23 September 2008. 相似文献
15.
Masaya Miyazaki Hiroshi Nishihara Hideki Hasegawa Masato Tashiro Lei Wang Taichi Kimura Mishie Tanino Masumi Tsuda Shinya Tanaka 《Biochemical and biophysical research communications》2013
The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated. 相似文献
16.
A型流感病毒NS1基因密码子去优化改造引起病毒毒力减弱 总被引:1,自引:0,他引:1
根据A型流感病毒密码子使用偏嗜性,选取稀有密码子对A/Puerto Rico/8/34(H1N1)病毒NS1基因内部110个氨基酸区域进行密码子同义突变改造,并全基因合成NS基因,利用反向遗传操作技术拯救出含有密码子去优化NS1基因的重组病毒(deoNS)。体外细胞噬斑形成实验和病毒生长曲线证明该病毒在MDCK细胞内的感染和复制能力比野生型病毒低约1000倍;BALB/c小鼠体内致病力实验证明deoNS病毒不能引起小鼠发病和死亡,该病毒在小鼠肺内的复制滴度比野生型病毒低100~1000倍。本研究探索了通过基因组密码子去优化改造途径降低A型流感病毒毒力的可行性,首次证明流感病毒NS1基因密码子去优化同义突变可以降低病毒毒力,为流感减毒活疫苗的研究提供了新的思路。 相似文献
17.
Yu E Zhai D Jin C Gerlic M Reed JC Liddington R 《The Journal of biological chemistry》2011,286(35):30748-30758
In multicellular organisms, apoptosis is a powerful method of host defense against viral infection. Apoptosis is mediated by a cascade of caspase-family proteases that commit infected cells to a form of programmed cell death. Therefore, to replicate within host cells, viruses have developed various strategies to inhibit caspase activation. In the mitochondrial cell-death pathway, release of cytochrome c from mitochondria into the cytosol triggers assembly of the oligomeric apoptosome, resulting in dimerization and activation of the apical caspase-9 (C9), and in turn its downstream effector caspases, leading to apoptosis. We previously showed that the vaccinia virus-encoded Bcl-2-like protein, F1L, which suppresses cytochrome c release by binding Bcl-2 family proteins, is also a C9 inhibitor. Here, we identify a novel motif within the flexible N-terminal region of F1L that is necessary and sufficient for interaction with and inhibition of C9. Based on functional studies and mutagenesis, we developed an atomic model of the complex in which F1L inhibits C9 by engaging the active site in the reverse orientation with respect to substrate peptides, in a manner analogous to that of XIAP-mediated inhibition of caspases-3 and -7. These studies offer new insights into the mechanism of apoptosome inhibition by F1L as well as novel probes to understand the molecular bases of apoptosome regulation and turnover. They also suggest how the two distinct functionalities of F1L (inhibition of C9 and suppression of pro-apoptotic Bcl-2 family proteins) may operate in a cellular setting. 相似文献
18.
Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase 总被引:1,自引:0,他引:1 下载免费PDF全文
Elliott J Lynch OT Suessmuth Y Qian P Boyd CR Burrows JF Buick R Stevenson NJ Touzelet O Gadina M Power UF Johnston JA 《Journal of virology》2007,81(7):3428-3436
Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines. 相似文献
19.
A mutant form of the tax protein of bovine leukemia virus (BLV), with enhanced transactivation activity,increases expression and propagation of BLV in vitro but not in vivo 下载免费PDF全文
Tajima S Takahashi M Takeshima SN Konnai S Yin SA Watarai S Tanaka Y Onuma M Okada K Aida Y 《Journal of virology》2003,77(3):1894-1903
In a previous study, we identified an interesting mutant form of the Tax protein of bovine leukemia virus (BLV), designated D247G. This mutant protein strongly transactivated the long terminal repeat of BLV and was also able to transactivate the cellular proto-oncogene c-fos. This finding suggested that BLV that encode the mutant protein might propagate and induce lymphoma more efficiently than wild-type BLV. To characterize the effects of the strong transactivation activity of the mutant Tax protein, we constructed an infectious molecular clone of BLV that encoded D247G and examined the replication and propagation of the virus in vitro and in vivo. Cultured cells were transfected with the wild-type and mutant BLV, and then levels of viral proteins and particles and the propagation of viruses were compared. As expected, in vitro, mutant BLV produced more viral proteins and particles and was transmitted very effectively. We injected the wild-type and mutant BLV into sheep, which are easily infected with BLV, and monitored the proportion of BLV-positive cells in the blood and the expression of BLV RNA for 28 weeks. By contrast to the results of our analyses in vitro, we found no significant difference in the viral load or the expression of viral RNA between sheep inoculated with wild-type or mutant BLV. Our observations indicate that the mutant D247G Tax protein does not enhance the expansion of BLV and that there might be a dominant mechanism for regulation of the expression of BLV in vivo. 相似文献
20.
Epstein-Barr virus LMP2A alters in vivo and in vitro models of B-cell anergy, but not deletion, in response to autoantigen 下载免费PDF全文
A significant percentage of the population latently harbors Epstein-Barr virus (EBV) in B cells. One EBV-encoded protein, latent membrane protein 2A (LMP2A), is expressed in tissue culture models of EBV latent infection, in human infections, and in many of the EBV-associated proliferative disorders. LMP2A constitutively activates proteins involved in the B-cell receptor (BCR) signal transduction cascade and inhibits the antigen-induced activation of these proteins. In the present study, we investigated whether LMP2A alters B-cell receptor signaling in primary B cells in vivo and in vitro. LMP2A does not inhibit antigen-induced tolerance in response to strong stimuli in an in vivo tolerance model in which B cells are reactive to self-antigen. In contrast, LMP2A bypasses anergy induction in response to low levels of soluble hen egg lysozyme (HEL) both in vivo and in vitro as determined by the ability of LMP2A-expressing HEL-specific B cells to proliferate and induce NF-kappaB nuclear translocation after exposure to low levels of antigen. Furthermore, LMP2A induces NF-kappaB nuclear translocation independent of BCR cross-linking. Since NF-kappaB is required to bypass tolerance induction, this LMP2A-dependent NF-kappaB activation may complete the tolerogenic signal induced by low levels of soluble HEL. Overall, the findings suggest that LMP2A may not inhibit BCR-induced signals under all conditions as previously suggested by studies with EBV immortalized B cells. 相似文献