首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most GABAergic interneurons originate from the basal forebrain and migrate tangentially into the cortex. The migratory pathways and mode of interneuron migration within the developing cerebral cortex, however, previously was largely unknown. Time-lapse imaging and in vivo labelling with glutamate decarboxylase (GAD)67-green fluorescence protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)ergic neurons indicated that multidirectional tangential (MDT) migration of interneurons takes place in both the marginal zone (MZ) and the ventricular zone (VZ) of the cortex. Quantitative analysis of migrating interneurons showed that rostrocaudally migrating neurons outnumber those migrating mediolaterally in both of these zones. In vivo labelling with a lipophilic dye showed that the MDT migration in the MZ occurs throughout the cortex over distances of up to 3 mm during a period of a few days. These results indicate that MZ cortical interneurons undergo a second phase of tangential migration in all directions and over long distances, after reaching the cortex by dorsomedial tangential migration. The MDT migration in the MZ may disperse and intermix interneurons within the cortex, resulting in a balanced distribution of interneuron subtypes.  相似文献   

2.
Networks of specific inhibitory interneurons regulate principal cell firing in several forms of neocortical activity. Fast-spiking (FS) interneurons are potently self-inhibited by GABAergic autaptic transmission, allowing them to precisely control their own firing dynamics and timing. Here we show that in FS interneurons, high-frequency trains of action potentials can generate a delayed and prolonged GABAergic self-inhibition due to sustained asynchronous release at FS-cell autapses. Asynchronous release of GABA is simultaneously recorded in connected pyramidal (P) neurons. Asynchronous and synchronous autaptic release show differential presynaptic Ca2+ sensitivity, suggesting that they rely on different Ca2+ sensors and/or involve distinct pools of vesicles. In addition, asynchronous release is modulated by the endogenous Ca2+ buffer parvalbumin. Functionally, asynchronous release decreases FS-cell spike reliability and reduces the ability of P neurons to integrate incoming stimuli into precise firing. Since each FS cell contacts many P neurons, asynchronous release from a single interneuron may desynchronize a large portion of the local network and disrupt cortical information processing.  相似文献   

3.
In previous work, we showed a robust γ-aminobutyric acid (GABAergic) synaptic input onto embryonic luteinizing hormone-releasing hormone (LHRH) neurons maintained in olfactory explants. In this study, we identify GABAergic neurons in olfactory pit (OP) of embryonic micein vivoand study, using patch-pipet whole-cell current and voltage clamp techniques, synaptic interactions of these neurons in explant cultures.In vivo,glutamate decarboxylase (GAD, the enzyme which synthesizes GABA) mRNA was first detected in nasal regions on Embryonic Day (E) 11.5. From E12.5 to E13.5, robust GAD expression was localized to cells primarily in the ventral aspect of the OP. GAD mRNA was not detected over dorsally located cells in olfactory sensory or respiratory epithelium. In addition, GAD mRNA was not observed in cells along olfactory axons. GAD mRNA was dramatically reduced in the OP/vomeronasal organ by E16.5. Using antibodies against both GABA and GAD, immunopositive axonal-like tracts were detected in the nasal septum on E12.5. GABAergic staining decreased by E13.5. To examine synaptic interactions of these GABAergic cells, embryonic olfactory explants were generated and maintained in serum-free media. As explants spread, neuron-like cells migrated into the periphery, sometimes forming ganglion-like clusters. Cells were recorded, marked intracellularly with Lucifer Yellow and post-fixation, immunocytochemically examined. Forty-six cells, typically multipolar, were GABAergic, had resting potentials around −50 mV, and exhibited spontaneous action potentials which were generated by spontaneous depolarizing GABAergic (GABAA) synaptic activity. OP neurons depolarized in response to GABA by increasing Clconductance. The biophysical properties of OP-derived GABAergic neurons were distinct from those reported for olfactory receptor neurons but similar to embryonic LHRH neurons. However, unlike LHRH neurons, GABAergic neurons did not migrate large distances in olfactory explants or appear to leave the olfactory pitin vivo.  相似文献   

4.
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates, but has also been reported in multiple cell types outside the CNS. A GABAergic system has been proposed in neuroepithelial bodies (NEBs) in monkey lungs. Pulmonary NEBs are known as complex intraepithelial sensory airway receptors and are part of the NEB microenvironment. Aim of the present study was to unravel a GABAergic signaling system in the NEB microenvironment in mouse lungs, enabling the use of genetically modified animals for future functional studies. Immunostaining of mouse lungs revealed that glutamic acid decarboxylase 65/67 (GAD65/67), a rate-limiting enzyme in the biosynthesis of GABA, and the vesicular GABA transporter (VGAT) were exclusively expressed in NEB cells. In GAD67-green fluorescent protein (GFP) knock-in mice, all pulmonary NEBs appeared to express GFP. For confocal live cell imaging, ex vivo vibratome lung slices of GAD67-GFP mice can be directly loaded with fluorescent functional probes, e.g. a red-fluorescent calcium dye, without the necessity of time-consuming prior live visualization of NEBs. RT-PCR of the NEB microenvironment obtained by laser microdissection revealed the presence of both GABAA and GABAB (R1 and R2) receptors, which was confirmed by immunostaining. In conclusion, the present study not only revealed the presence of a GABAergic signaling pathway, but also the very selective expression of GFP in pulmonary NEBs in a GAD67-GFP mouse model. Different proof of concept experiments have clearly shown that adoption of the GAD67-GFP mouse model will certainly boost future functional imaging and gene expression analysis of the mouse NEB microenvironment.  相似文献   

5.
Neuronal migration is crucial for the construction of neuronal architecture such as layers and nuclei. Most inhibitory interneurons in the neocortex derive from the basal forebrain and migrate tangentially; however, little is known about the mode of migration of these neurons in the cortex. We used glutamate decarboxylase (Gad)67-green fluorescent protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)-ergic neurons and performed time-lapse analysis. In coronal slices, many GFP-positive neurons in the lower intermediate zone (IZ) and subventricular zone (SVZ) showed robust tangential migration from lateral to medial cortex, while others showed radial and non-radial migration mostly towards the pial surface. In flat-mount preparations, GFP-positive neurons of the marginal zone (MZ) showed multidirectional tangential migration. Some of these neurons descended toward the cortical plate (CP). Intracortical migration of these neurons was largely unaffected by a treatment that cleaves glycosylphosphatidylinositol (GPI) anchors. These findings suggest that tangential migration of cortical interneurons from lateral to medial cortex predominantly occurs in the IZ/SVZ and raise the possibility that a part of the pial surface-directed neurons in the IZ/SVZ reach the MZ, whereby they spread into the whole area of the cortex. At least a part of these neurons may descend toward the CP. Our results also suggest that intracortical migration of GABAergic neurons occurs independent of GPI-anchored proteins.  相似文献   

6.
GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.  相似文献   

7.
Hypoglycemia is the major problem to blood glucose homeostasis in treatment of diabetes and is associated with severe irreversible consequences including seizures, coma and death. GABAergic inhibitory function in the cerebral cortex plays an important role in controlling the excitability and responsiveness of cortical neurons. Present study analysed effects of insulin induced hypoglycemia and streptozotocin induced diabetes on the cortical GABA receptor binding, GABAAά1, GABAB receptor subtype expression, GAD and GLUT3 expression. Diabetic rats showed decreased [3H] GABA binding in the cerebral cortex compared to control while hypoglycemia exacerbated the decrease. GABA receptor subunits; GABAAά1, GABAB and GAD expression significantly decreased in diabetic rats whereas hypoglycemia significanly decreased the expression compared to diabetic. GLUT3 expression significantly up regulated during both hypo and hyperglycemia. Our results showed that hypoglycemia and hyperglycemia decreased GABAergic neuroprotective function in the cerebral cortex, which account for the increased vulnerability of cerebral cortex to subsequent neuronal damage during hypo/hyperglycemia.  相似文献   

8.
Jiang M  Zhu J  Liu Y  Yang M  Tian C  Jiang S  Wang Y  Guo H  Wang K  Shu Y 《PLoS biology》2012,10(5):e1001324
Down-regulation of GABAergic inhibition may result in the generation of epileptiform activities. Besides spike-triggered synchronous GABA release, changes in asynchronous release (AR) following high-frequency discharges may further regulate epileptiform activities. In brain slices obtained from surgically removed human neocortical tissues of patients with intractable epilepsy and brain tumor, we found that AR occurred at GABAergic output synapses of fast-spiking (FS) neurons and its strength depended on the type of connections, with FS autapses showing the strongest AR. In addition, we found that AR depended on residual Ca2+ at presynaptic terminals but was independent of postsynaptic firing. Furthermore, AR at FS autapses was markedly elevated in human epileptic tissue as compared to non-epileptic tissue. In a rat model of epilepsy, we found similar elevation of AR at both FS autapses and synapses onto excitatory neurons. Further experiments and analysis showed that AR elevation in epileptic tissue may result from an increase in action potential amplitude in the FS neurons and elevation of residual Ca2+ concentration. Together, these results revealed that GABAergic AR occurred at both human and rat neocortex, and its elevation in epileptic tissue may contribute to the regulation of epileptiform activities.  相似文献   

9.
While tryptophan hydroxylase-2 (Tph2) null mutant (Tph2 ?/?) mice are completely deficient in brain serotonin (5-HT) synthesis, the formation of serotonergic neurons and pathfinding of their projections are not impaired. However, 5-HT deficiency, during development and in the adult, might affect morphological and functional parameters of other neural systems. To assess the influence of 5-HT deficiency on γ-amino butyric acid (GABA) systems, we carried out measurements of GABA concentrations in limbic brain regions of adult male wildtype (wt), heterozygous (Tph2 +/?) and Tph2 ?/? mice. In addition, unbiased stereological estimation of GABAergic interneuron numbers and density was performed in subregions of amygdala and hippocampus. Amygdala and prefrontal cortex displayed significantly increased and decreased GABA concentrations, respectively, exclusively in Tph2 +/? mice while no changes were detected between Tph2 ?/? and wt mice. In contrast, in the hippocampus, increased GABA concentrations were found in Tph2 ?/? mice. While total cell density in the anterior basolateral amygdala did not differ between genotypes, the number and density of the GABAergic interneurons were significantly decreased in Tph2 ?/? mice, with the group of parvalbumin (PV)-immunoreactive (ir) interneurons contributing somewhat less to the decrease than that of non-PV-ir GABAergic interneurons. Major morphological changes were also absent in the dorsal hippocampus, and only a trend toward reduced density of PV-ir cells was observed in the CA3 region of Tph2 ?/? mice. Our findings are the first to document that life-long reduction or complete lack of brain 5-HT transmission causes differential changes of GABA systems in limbic regions which are key players in emotional learning and memory processes. The changes likely reflect a combination of developmental alterations and functional adaptations of emotion circuits to balance the lack of 5-HT, and may underlie altered emotional behavior in 5-HT-deficient mice. Taken together, our findings provide further insight into the mechanisms how life-long 5-HT deficiency impacts the pathogenesis of anxiety- and fear-related disorders.  相似文献   

10.
The proper development and maturation of neuronal circuits require precise migration of component neurons from their birthplace (germinal zone) to their final positions. Little is known about the effects of aberrant neuronal position on the functioning of organized neuronal groups, especially in mammals. Here, we investigated the formation and properties of brainstem respiratory neurons in looptail (Lp) mutant mice in which facial motor neurons closely apposed to some respiratory neurons fail to migrate due to loss of function of the Wnt/Planar Cell Polarity (PCP) protein Vangl2. Using calcium imaging and immunostaining on embryonic hindbrain preparations, we found that respiratory neurons constituting the embryonic parafacial oscillator (e-pF) settled at the ventral surface of the medulla in Vangl2Lp/+ and Vangl2Lp/Lp embryos despite the failure of tangential migration of its normally adjacent facial motor nucleus. Anatomically, the e-pF neurons were displaced medially in Lp/+ embryos and rostro-medially Lp/Lp embryos. Pharmacological treatments showed that the e-pF oscillator exhibited characteristic network properties in both Lp/+ and Lp/Lp embryos. Furthermore, using hindbrain slices, we found that the other respiratory oscillator, the preBötzinger complex, was also anatomically and functionally established in Lp mutants. Importantly, the displaced e-pF oscillator established functional connections with the preBötC oscillator in Lp/+ mutants. Our data highlight the robustness of the developmental processes that assemble the neuronal networks mediating an essential physiological function.  相似文献   

11.
People with Rett syndrome and mouse models show autonomic dysfunction involving the brain stem locus coeruleus (LC). Neurons in the LC of Mecp2-null mice are overly excited, likely resulting from a defect in neuronal intrinsic membrane properties and a deficiency in GABA synaptic inhibition. In addition to the synaptic GABA receptors, there is a group of GABAA receptors (GABAARs) that is located extrasynaptically and mediates tonic inhibition. Here we show evidence for augmentation of the extrasynaptic GABAARs in Mecp2-null mice. In brain slices, exposure of LC neurons to GABAAR agonists increased tonic currents that were blocked by GABAAR antagonists. With 10 μm GABA, the bicuculline-sensitive tonic currents were ∼4-fold larger in Mecp2-null LC neurons than in the WT. Single-cell PCR analysis showed that the δ subunit, the principal subunit of extrasynaptic GABAARs, was present in LC neurons. Expression levels of the δ subunit were ∼50% higher in Mecp2-null neurons than in the WT. Also increased in expression in Mecp2-null mice was another extrasynaptic GABAAR subunit, α6, by ∼4-fold. The δ subunit-selective agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]]benzamide activated the tonic GABAA currents in LC neurons and reduced neuronal excitability to a greater degree in Mecp2-null mice than in the WT. Consistent with these findings, in vivo application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride alleviated breathing abnormalities of conscious Mecp2-null mice. These results suggest that extrasynaptic GABAARs seem to be augmented with Mecp2 disruption, which may be a compensatory response to the deficiency in GABAergic synaptic inhibition and allows control of neuronal excitability and breathing abnormalities.  相似文献   

12.
Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron‐type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA‐CB1‐KO mice) or cortical glutamatergic neurons (Glu‐CB1‐KO mice). Compared to their wild‐type littermates, Glu‐CB1‐KO displayed a small decrease of CB1 mRNA amount, immunoreactivity and [³H]CP55,940 binding. Conversely, GABA‐CB1‐KO mice showed a drastic reduction of these parameters, confirming that CB1 is present at much higher density on hippocampal GABAergic interneurons than glutamatergic neurons. Surprisingly, however, saturation analysis of HU210‐stimulated [35S]GTPγS binding demonstrated that ‘glutamatergic’ CB1 is more efficiently coupled to G protein signalling than ‘GABAergic’ CB1. Thus, the minority of CB1 on glutamatergic neurons is paradoxically several fold more strongly coupled to G protein signalling than ‘GABAergic’ CB1. This selective signalling mechanism raises the possibility of designing novel cannabinoid ligands that differentially activate only a subset of physiological effects of CB1 stimulation, thereby optimizing therapeutic action.  相似文献   

13.
Subburaju S  Benes FM 《PloS one》2012,7(3):e33352
Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD67 (GAD1) expression and may play a role in γ-amino butyric acid (GABA) dysfunction in schizophrenia (SZ) and bipolar disorder (BD). To obtain a more detailed understanding of how GAD67 regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD67 and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD67-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2) and the post-synaptic density protein 95 (PSD95). The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD67, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of “differentiated” HiB5 neurons. In the presence of Ca2+ and K+, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD65, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD67 regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD67 regulation in the adult hippocampus.  相似文献   

14.
Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells.  相似文献   

15.
Increasing evidence shows that the rostral agranular insular cortex (RAIC) is important in the modulation of nociception in humans and rats and that dopamine and GABA appear to be key neurotransmitters in the function of this cortical region. Here we use immunocytochemistry and path tracing to examine the relationship between dopamine and GABA related elements in the RAIC of the rat. We found that the RAIC has a high density of dopamine fibers that arise principally from the ipsilateral ventral tegmental area/substantia nigra (VTA/SN) and from a different set of neurons than those that project to the medial prefrontal cortex. Within the RAIC, there are close appositions between dopamine fibers and GABAergic interneurons. One target of cortical GABA appears to be a dense band of GABAB receptor-bearing neurons located in lamina 5 of the RAIC. The GABAB receptor-bearing neurons project principally to the amygdala and nucleus accumbens with few or no projections to the medial prefrontal cortex, cingulate gyrus, the mediodorsal thalamic nucleus or contralateral RAIC. The current anatomical data, together with previous behavioral results, suggest that part of the dopaminergic modulation of the RAIC occurs through GABAergic interneurons. GABA is able to exert specific effects through its action on GABAB receptor-bearing projection neurons that target a few subcortical limbic structures. Through these connections, dopamine innervation of the RAIC is likely to affect the motivational and affective dimensions of pain.  相似文献   

16.

Background

Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer''s disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear.

Methodology and Principal Findings

We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity.

Conclusions and Significance

Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.  相似文献   

17.
Huntington’s disease (HD) is an autosomal neurodegenerative disease. Its manifestations is selective degeneration of medium-sized spiny neurons (MSN) in the striatum. The specificity of the vulnerability of these GABAergic MSNs can be explained by abnormal protein accumulation, excitotoxicity, mitochondrial dysfunction, and failure of trophic control, among other dysfunctions. In this study, we used in vitro and in vivo models of HD to study the effects of GABAergic neuron stimulation on the cellular protein degradation machinery. We administered the GABAB receptor agonist, baclofen, to wild-type or mutant huntingtin-expressing striatal cells (HD19 or HD43). Chymotrypsin-like proteasome activity and cell viability were significantly increased in the mutant huntingtin-expressing striatal cells (HD43) after GABAB receptor agonist treatment. In addition, we systemically administered baclofen to a HD model containing the entire human huntingtin gene with 128 CAG repeats (YAC128). Chymotrypsin-like proteasome activity was significantly increased in YAC128 transgenic mice after baclofen administration. Baclofen-injected mutant YAC128 mice also showed significantly reduced numbers of ubiquitin-positive neuronal intranuclear inclusions (NIIs) in the striatum. Baclofen markedly improved behavioral abnormalities in mutant YAC128 mice as determined by the rotarod performance test. These data indicate that stimulation of GABAergic neurons with the GABAB receptor agonist, baclofen, enhances ubiquitin-proteasome system (UPS) function and cell survival in in vitro and in vivo models of HD.  相似文献   

18.
Fibroblast growth factors (Fgfs) and their receptors (Fgfr) are expressed in the developing and adult CNS. Previous studies demonstrated a decrease in cortical interneurons and locomotor hyperactivity in mice with a conditional Fgfr1 deletion generated in radial glial cells during midneurogenesis (Fgfr1f/f;hGfapCre+). Here, we report earlier and more extensive inactivation of Fgfr1 in neuroepithelial cells of the CNS (Fgfr1f/f;NesCre+). Similar to findings in Fgfr1f/f;hGfapCre+ mice, parvalbumin positive (PV+) cortical interneurons are also decreased in the neocortex of Fgfr1f/f;NesCre+ mice when compared to control littermates (Fgfr1f/f). Fgfr1f/f;NesCre+ embryos do not differ from controls in the initial specification of GABAergic cells in the ganglionic eminence (GE) as assessed by in situ hybridization for Dlx2, Mash1 and Nkx2. Equal numbers of GABAergic neuron precursors genetically labeled with green fluorescent protein (GFP) were observed at P0 in Fgfr1f/f;hGfapCre+;Gad1-GFP mutant mice. However, fewer GFP+ and GFP+/PV+ interneurons were observed in these mutants at adulthood, indicating that a decrease in cortical interneuron markers is occurring postnatally. Fgfr1 is expressed in cortical astrocytes in the postnatal brain. To test whether the astrocytes of mice lacking Fgfr1 are less capable of supporting interneurons, we co-cultured wild type Gad1-GFP+ interneuron precursors isolated from the medial GE (MGE) with astrocytes from Fgfr1f/f control or Fgfr1f/f;hGfapCre+ mice. Interneurons grown on Fgfr1 deficient astrocytes had small soma size and fewer neurites per cell, but no differences in cell survival. Decreased soma size of Gad67 immunopositive interneurons was also observed in the cortex of adult Fgfr1f/f;NesCre+ mice. Our data indicate that astrocytes from Fgfr1 mutants are impaired in supporting the maturation of cortical GABAergic neurons in the postnatal period. This model may elucidate potential mechanisms of impaired PV interneuron maturation relevant to neuropsychiatric disorders that develop in childhood and adolescence.  相似文献   

19.
Gamma‐aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate‐limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin‐releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1–7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock‐out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 249–270, 2015  相似文献   

20.
Different subsets of interneurons in the Wistar rat neocortex and in neocortical transplants developing in a damaged nerve were identified by the following immunohistochemical markers: glutamate decarboxylase (GAD 67) for GABAergic nerve cells, NO-synthase (NOS) for NO-ergic neurons, choline acetyltransferase (ChAT) for cholinergic cells, and tyrosine hydroxylase for catecholaminergic structures. Twentyeight days after surgery, individual GAD 67-ir, NO-ir, ChAT-ir, and very rarely TH-ir cells were detected in the graft. It was shown that the number of GAD 67-ir neurons per unit area in the grafts was less than in the rat neocortex P20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号