首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

We have previously shown that transforming growth factor-beta (TGF-beta) impairs glucocorticoid (GC) function in pulmonary epithelial cell-lines. However, the signalling cascade leading to this impairment is unknown. In the present study, we provide the first evidence that TGF-beta impairs GC action in differentiated primary air-liquid interface (ALI) human bronchial epithelial cells (HBECs). Using the BEAS-2B bronchial epithelial cell line, we also present a systematic examination of the known pathways activated by TGF-beta, in order to ascertain the molecular mechanism through which TGF-beta impairs epithelial GC action.

Methods

GC transactivation was measured using a Glucocorticoid Response Element (GRE)–Secreted embryonic alkaline phosphatase (SEAP) reporter and measuring GC-inducible gene expression by qRT-PCR. GC transrepression was measured by examining GC regulation of pro-inflammatory mediators. TGF-beta signalling pathways were investigated using siRNA and small molecule kinase inhibitors. GRα level, phosphorylation and sub-cellular localisation were determined by western blotting, immunocytochemistry and localisation of GRα–Yellow Fluorescent Protein (YFP). Data are presented as the mean ± SEM for n independent experiments in cell lines, or for experiments on primary HBEC cells from n individual donors. All data were statistically analysed using GraphPad Prism 5.0 (Graphpad, San Diego, CA). In most cases, two-way analyses of variance (ANOVA) with Bonferroni post-hoc tests were used to analyse the data. In all cases, P <0.05 was considered to be statistically significant.

Results

TGF-beta impaired Glucocorticoid Response Element (GRE) activation and the GC induction of several anti-inflammatory genes, but did not broadly impair the regulation of pro-inflammatory gene expression in A549 and BEAS-2B cell lines. TGF-beta-impairment of GC transactivation was also observed in differentiated primary HBECs. The TGF-beta receptor (ALK5) inhibitor SB431541 fully prevented the GC transactivation impairment in the BEAS-2B cell line. However, neither inhibitors of the known downstream non-canonical signalling pathways, nor knocking down Smad4 by siRNA prevented the TGF-beta impairment of GC activity.

Conclusions

Our results indicate that TGF-beta profoundly impairs GC transactivation in bronchial epithelial cells through activating ALK5, but not through known non-canonical pathways, nor through Smad4-dependent signalling, suggesting that TGF-beta may impair GC action through a novel non-canonical signalling mechanism.  相似文献   

3.
The ubiquitous vacuolar H(+)-ATPase (V-ATPase), a multisubunit proton pump, is essential for intraorganellar acidification. Here, we hypothesized that V-ATPase is involved in the pathogenesis of kidney tubulointerstitial fibrosis. We first examined its expression in the rat unilateral ureteral obstruction (UUO) model of kidney fibrosis and transforming growth factor (TGF)-β1-mediated epithelial-to-mesenchymal transition (EMT) in rat proximal tubular epithelial cells (NRK52E). Immunofluorescence experiments showed that UUO resulted in significant upregulation of V-ATPase subunits (B2, E, and c) and α-smooth muscle actin (α-SMA) in areas of tubulointerstitial injury. We further observed that TGF-β1 (10 ng/ml) treatment resulted in EMT of NRK52E (upregulation of α-SMA and downregulation of E-cadherin) in a time-dependent manner and significant upregulation of V-ATPase B2 and c subunits after 48 h and the E subunit after 24 h, by real-time PCR and immunoblot analyses. The ATP hydrolysis activity tested by an ATP/NADH-coupled assay was increased after 48-h TGF-β1 treatment. Using intracellular pH measurements with the SNARF-4F indicator, Na(+)-independent pH recovery was significantly faster after an NH(4)Cl pulse in 48-h TGF-β1-treated cells than controls. Furthermore, the V-ATPase inhibitor bafilomycin A1 partially protected the cells from EMT. TGF-β1 induced an increase in the cell surface expression of the B2 subunit, and small interfering RNA-mediated B2 subunit knockdown partially reduced the V-ATPase activity and attenuated EMT induced by TGF-β1. Together, these findings show that V-ATPase may promote EMT and chronic tubulointerstitial fibrosis due to increasing its activity by either overexpression or redistribution of its subunits.  相似文献   

4.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and characterized by the formation of multiple fluid-filled cysts in the kidneys. It is believed that environmental factors may play an important role in the disease progression. However, the molecular identity of autocrine/paracrine factors influencing cyst formation is largely unknown. In this study, we identified transforming growth factor-β2 (TGF-β2) secreted by normal human kidney (NHK) and ADPKD cells as an inhibitor of cystogenesis in 3D culture system using ADPKD cells from human kidneys. TGF-β2 was identified in conditioned media (CM) of NHK and ADPKD cells as a latent factor activated by heat in vitro. While all TGF-β isoforms recombinant proteins (TGF-β1, -β2, or -β3) displayed a similar inhibitory effect on cyst formation, TGF-β2 was the predominant isoform detected in CM. The involvement of TGF-β2 in the suppression of cyst formation was demonstrated by using a TGF-β2 specific blocking antibody and a TGF-β receptor I kinase inhibitor. TGF-β2 inhibited cyst formation by a mechanism other than activation of p38 mitogen-activated protein (MAP) kinase that mediated cell death in ADPKD cells. Further, we found that TGF-β2 modulated expression of various genes involved in cell-cell and cell-matrix interactions and extracellular matrix proteins that may play a role in the regulation of cystogenesis. Collectively, our results suggest that TGF-β2 secreted by renal epithelial cells may be an inhibitor of cystogenesis influencing the progression of ADPKD.  相似文献   

5.
6.
The phenotype of Apert osteoblasts differs from that of normal osteoblasts in the accumulation of macromolecules in the extracellular matrix. Apert osteoblasts increase type I collagen, fibronectin and glycosaminoglycans secretion compared with normal osteoblasts. Because the extracellular matrix macromolecule accumulation is greatly modulated by transforming growth factor-beta(1), we examined the ability of normal and Apert osteoblasts to secrete transforming growth factor-beta(1) by CCL-64 assay and to produce transforming growth factor-beta(1 )by analysis of the mRNA expression of transforming growth factor-beta(1). Northern blot analysis revealed an increased amount of transforming growth factor-beta(1) mRNA expression in Apert osteoblasts compared with normal ones. Moreover, the level of the active transforming growth factor-beta(1) isoform was higher in Apert than in normal media. In pathologic cells, the increase in transforming growth factor-beta(1) gene expression was associated with a parallel increase in the factor secreted into the medium. The level of transforming growth factor-beta(1) was decreased by the addition of basic fibroblast growth factor. Transforming growth factor-beta(1) is controlled temporally and spatially during skeletal tissue development and produces complex stimulatory and inhibitory changes in osteoblast functions. We hypothesise that in vitro differences between normal and Apert osteoblasts may be correlated to different transforming growth factor-beta(1) cascade patterns, probably due to an altered balance between transforming growth factor-beta(1) and basic fibroblast growth factor.  相似文献   

7.
8.
9.
10.
Adult cardiac valve endothelial cells (VEC) undergo endothelial to mesenchymal transformation (EndMT) in response to transforming growth factor-β (TGFβ). EndMT has been proposed as a mechanism to replenish interstitial cells that reside within the leaflets and further, as an adaptive response that increases the size of mitral valve leaflets after myocardial infarction. To better understand valvular EndMT, we investigated TGFβ-induced signaling in mitral VEC, and carotid artery endothelial cells (CAEC) as a control. Expression of EndMT target genes α-smooth muscle actin (α-SMA), Snai1, Slug, and MMP-2 were used to monitor EndMT. We show that TGFβ-induced EndMT increases phosphorylation of ERK (p-ERK), and this is blocked by Losartan, an FDA-approved antagonist of the angiotensin II type 1 receptor (AT1), that is known to indirectly inhibit phosphorylation of ERK (p-ERK). Blocking TGF-β-induced p-ERK directly with the MEK1/2 inhibitor RDEA119 was sufficient to prevent EndMT. In mitral VECs, TGFβ had only modest effects on phosphorylation of the canonical TGF-β signaling mediator mothers against decapentaplegic homolog 3 (SMAD3). These results indicate a predominance of the non-canonical p-ERK pathway in TGFβ-mediated EndMT in mitral VECs. AT1 and angiotensin II type 2 (AT2) were detected in mitral VEC, and high concentrations of angiotensin II (AngII) stimulated EndMT, which was blocked by Losartan. The ability of Losartan or MEK1/2 inhibitors to block EndMT suggests these drugs may be useful in manipulating EndMT to prevent excessive growth and fibrosis that occurs in the leaflets after myocardial infarction.  相似文献   

11.
Qin Y  Zhong Y  Dang L  Zhu M  Yu H  Chen W  Cui J  Bian H  Li Z 《Journal of Proteomics》2012,75(13):4114-4123
Although aberrant glycosylation of human glycoproteins is related to liver fibrosis that results from chronic damage to the liver in conjunction with the activation of hepatic stellate cells (HSCs), little is known about the precision alteration of protein glycosylation referred to the activation of HSCs by transforming growth factor-β1 (TGF-β1). The human HSCs, LX-2 were activated by TGF-β1. The lectin microarrays were used to probe the alteration of protein glycosylation in the activated HSCs compared with the quiescent HSCs. Lectin histochemistry was used to further validate the lectin binding profiles and assess the distribution of glycosidic residues in cells. As a result, 14 lectins (e. g. AAL, PHA-E, ECA and ConA) showed increased signal while 7 lectins (e. g. UEA-I and GNA) showed decreased signal in the activated LX-2 compared with the quiescent LX-2. Meanwhile, AAL, PHA-E and ECA staining showed moderate binding to the cytoplasma membrane in the quiescent LX-2, and the binding intensified in the same regions of the activated LX-2. In conclusion, the precision alteration of protein glycosylation related to the activation of the HSCs may provide useful information to find new molecular mechanism of HSC activation and antifibrotic therapeutic strategies.  相似文献   

12.
13.
Background: Transforming growth factor-β1 (TGF-β1) plays a critical role in human cancer development. Present study aimed to explore the clinical significance of serum TGF-β1 levels in patients with lung cancer and analyze the relationship between TGF-β1 and existing tumor markers for lung cancer. Methods: Serum was collected from 118 patients with lung cancer and 40 healthy volunteers. Serum TGF-β1 levels were measured by enzyme-linked immunosorbent assay (ELISA), and the association with various clinical characteristics was analyzed. The diagnostic value of TGF-β1 was assessed alone and in combination with existing tumor markers for lung cancer. Results: Serum TGF-β1 levels were significantly higher in patients with lung cancer compared to healthy volunteers [0.6 × 105 (0.4 × 105, 0.9 × 105) pg/ml vs 0.5 × 105 (0.3 × 105, 0.7 × 105) pg/ml, P = 0.040]. Although there was a positive correlation between serum TGF-β1 levels and advanced stages, the significant difference was not found between early stages and advanced stages (P = 0.116). The ability of serum TGF-β1 to discriminate lung cancer at a cutoff value of 79,168 pg/ml exhibited sensitivity of 30.6% and specificity of 97.5%. Serum TGF-β1 levels were correlated to cytokeratin fragment 21-1 (CYFRA21-1; R = 0.308, P = 0.020) and neuron-specific enolase (NSE; R = 0.558, P = 0.003). The diagnostic accuracy rates for the existing lung-tumor markers, as SCC, CYFRA21-1, and NSE, were increased from 20.0%, 34.6%, and 45.9% to 48.9%, 51.7%, and 54.5%, respectively by the inclusion of serum TGF-β1 levels. Conclusion: Quantification of serum TGF-β1 levels by ELISA may provide a novel complementary tool for the clinical diagnosis of lung cancer.  相似文献   

14.
Epithelial-mesenchymal transition (EMT) has emerged as a vital process in embryogenesis, carcinogenesis, and tissue fibrosis. Transforming growth factor-beta 1 (TGF-β1)-mediated signaling pathways play important roles in the EMT process. MicroRNA-146a (miR-146a) has been suggested as a significant regulatory molecule in fibrogenesis. Therefore, the present study aimed to evaluate the effect of miR-146a on the EMT of hepatocytes and to investigate the role of overexpressing miR-146a on rat hepatic fibrosis. The results showed that the miR-146a level decreased during the EMT process of L02 hepatocytes induced by TGF-β1 in vitro. Moreover, miR-146a overexpression led to significant reduction of EMT-related markers expression in hepatocytes. Subsequent experiments revealed that miR-146a attenuated the EMT process in hepatocytes by targeting small mothers against decapentaplegic (SMAD) 4. Meanwhile, restoration of SMAD4 expression rescued the inhibitory effect of miRNA-146a on EMT. Further in vivo studies revealed that intravenous injection of miR-146a-expressing adenovirus (Ad-miR-146a) successfully restored the miR-146a levels and mitigated fibrogenesis in the livers of CCl4-treated rats. More importantly, after Ad-miR-146a treatment, inhibition of both EMT traits and SMAD4 expression was observed. The results of the present study showed that miR-146a/SMAD4 is a key signaling cascade that inhibits hepatocyte EMT, and the introduction of miR-146a might present a promising therapeutic option for liver fibrosis.  相似文献   

15.
16.

Objectives

To investigate the effects of tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) on the proliferation and differentiation of tendon-derived stem cells (TDSC).

Results

TNF-α inhibits the proliferation and tenogenic/osteogenic differentiation of TDSC but, after simultaneous or sequential treatment with TGF-β1 and TNF-α, the expression of tenogenic/osteogenic-related marker and proliferation of TDSC was significantly increased. During these processes, Smad2/3 and Smad1/5/8 were highly phosphorylated, meaning that the TGF-β and BMP signaling pathways were highly activated. Further study revealed that the expression of Inhibitor-Smad appeared to be negatively correlated to the proliferation and differentiation of TDSC.

Conclusions

Combining the use of TNF-α and TGF-β1 could improve the proliferation and differentiation of TDSC in vitro, and the expression of I-Smad is negatively correlated with TDSC proliferation and differentiation.
  相似文献   

17.
18.
ABSTRACT

Astragaloside IV (AS#IV) has previously demonstrated antitumoractivity. We investigated the effect and mechanisms of AS#IV in relation to epithelial–mesenchymal transition (EMT), viainterference with the Wnt/β-catenin signaling pathway in gliomaU251 cells. Induction of glioma U251 cells by transforming growthfactor (TGF)#β1 activated EMT, including switching E#cadherin toN-cadherin and altering the expression of Wnt/β-catenin signalingpathway components such as vimentin, β-catenin, and cyclin-D1.AS-IV inhibited the viability, invasion, and migration of TGF-β1-induced glioma U251 cells. AS-IV also interfered with the TGF#β1-induced Wnt/β-catenin signaling pathway in glioma U251 cells.These findings indicate that AS#IV prohibits TGF#β1-induced EMTby disrupting the Wnt/β-catenin pathway in glioma U251 cells. AS#IV may thus be a potential candidate agent for treating glioma andother central nervous system tumors.  相似文献   

19.
Insulin receptor substrate (IRS) proteins comprise a family of adaptor molecules that integrate extracellular signals from insulin and other ligands to intracellular effectors such as phosphoinositide 3-kinase and mitogen-activated protein kinase. The predominant forms of IRS protein in humans, IRS1 and IRS2, are widely expressed. Despite structural similarities, IRS1 and IRS2 display distinct signalling modalities, and mice lacking these proteins present with distinct phenotypes. Transforming growth factor (TGF)-β1 is the primary cytokine shown to induce epithelial-mesenchymal transition. Recent data have demonstrated a role for IRS1 in TGF-β1-induced epithelial-mesenchymal transition in lung epithelial cells. In the present study, we report data showing that TGF-β1 signals via IRS2 in kidney epithelial cells. Small interfering RNA (siRNA)-mediated targeting of IRS2 increased E-cadherin expression, although it did not alter TGF-β1-mediated E-cadherin repression. Phosphorylation of the downstream target of IRS2/Akt signalling, FoxO3a, was induced on Ser253 and, to a lesser extent, on Thr32. Transfection of FoxO3aThr32Ala mutant for 24?h greatly reduced FoxO3a phosphorylation on Ser253 but over-expression of FoxO3a Ser253Ala did not effect Thr32 phosphorylation, suggesting that a distinct order of phosphorylation of FoxO3a is required for physiological function in cells. Transfection of FoxO3a Ser253Ala mutant partially inhibited TGF-β1-mediated E-cadherin repression at 24?h. Taken together, these data highlight novel roles for IRS2 and FoxO3a in the regulation of kidney epithelial cells by E-cadherin.  相似文献   

20.
Ali NA  Molloy MP 《Proteomics》2011,11(16):3390-3401
The transforming growth factor‐β (TGF‐β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF‐β signaling pathway; however, reports suggest that TGF‐β can activate other cellular pathways independent of Smad4. By investigating the TGF‐β‐regulated phosphoproteome, we aimed to uncover new functions controlled by TGF‐β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)‐labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF‐β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF‐β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin‐dependent kinases substrate, hepatoma‐derived growth factor and cell division kinases amongst others were induced following TGF‐β stimulation, while the phosphorylation of TRAF2 and NCK‐interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF‐β‐modulated phosphorylation responses in colon carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号