首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
UFD2a is a mammalian homolog of Saccharomyces cerevisiae Ufd2, originally described as an E4 ubiquitination factor. UFD2a belongs to the U-box family of ubiquitin ligases (E3s) and likely functions as both an E3 and E4. We have isolated and characterized the mouse gene (Ube4b) for UFD2a. A full-length (approximately 5700 bp) Ube4b cDNA was isolated and the corresponding gene spans >100 kb, comprising 27 exons. Luciferase reporter gene analysis of the 5(') flanking region of Ube4b revealed that nucleotides -1018 to -943 (relative to the translation initiation site) possess promoter activity. This functional sequence contains two putative Sp1 binding sites but not a TATA box. Immunoblot and immunohistochemical analyses revealed that UFD2a is expressed predominantly in the neuronal tissues. We also show that UFD2a interacts with VCP (a AAA-family ATPase) that is thought to mediate protein folding. These data implicate UFD2a in the degradation of neuronal proteins by the ubiquitin-proteasome pathway.  相似文献   

2.
The AAA-ATPase VCP (also known as p97) cooperates with distinct cofactors to process ubiquitylated proteins in different cellular pathways. VCP missense mutations cause a systemic degenerative disease in humans, but the molecular pathogenesis is unclear. We used an unbiased mass spectrometry approach and identified a VCP complex with the UBXD1 cofactor, which binds to the plasma membrane protein caveolin-1 (CAV1) and whose formation is specifically disrupted by disease-associated mutations. We show that VCP-UBXD1 targets mono-ubiquitylated CAV1 in SDS-resistant high-molecular-weight complexes on endosomes, which are en route to degradation in endolysosomes. Expression of VCP mutant proteins, chemical inhibition of VCP, or siRNA-mediated depletion of UBXD1 leads to a block of CAV1 transport at the limiting membrane of enlarged endosomes in cultured cells. In patient muscle, muscle-specific caveolin-3 accumulates in sarcoplasmic pools and specifically delocalizes from the sarcolemma. These results extend the cellular functions of VCP to mediating sorting of ubiquitylated cargo in the endocytic pathway and indicate that impaired trafficking of caveolin may contribute to pathogenesis in individuals with VCP mutations.  相似文献   

3.
The chaperone-related AAA ATPase Cdc48 (p97/VCP in higher eukaryotes) segregates ubiquitylated proteins for subsequent degradation by the 26S proteasome or for nonproteolytic fates. The specific outcome of Cdc48 activity is controlled by the evolutionary conserved cofactors Ufd2 and Ufd3, which antagonistically regulate the substrates' ubiquitylation states. In contrast to the interaction of Ufd3 and Cdc48, the interaction between the ubiquitin chain elongating enzyme Ufd2 and Cdc48 has not been precisely mapped. Consequently, it is still unknown whether physiological functions of Ufd2 in fact require Cdc48 binding. Here, we show that Ufd2 binds to the C-terminal tail of Cdc48, unlike the human Ufd2 homologue E4B, which interacts with the N domain of p97. The binding sites for Ufd2 and Ufd3 on Cdc48 overlap and depend critically on the conserved residue Y834 but are not identical. Saccharomyces cerevisiae cdc48 mutants altered in residue Y834 or lacking the C-terminal tail are viable and exhibit normal growth. Importantly, however, loss of Ufd2 and Ufd3 binding in these mutants phenocopies defects of Δufd2 and Δufd3 mutants in the ubiquitin fusion degradation (UFD) and Ole1 fatty acid desaturase activation (OLE) pathways. These results indicate that key cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation require their interaction with Cdc48.  相似文献   

4.
Alternative splicing (AS) contributes to the diversity of the proteome by producing multiple isoforms from a single gene. Although short-read RNA-sequencing methods have been the gold standard for determining AS patterns of genes, they have a difficulty in defining full-length mRNA isoforms assembled using different exon combinations. Tropomyosin 1 (TPM1) is an actin-binding protein required for cytoskeletal functions in non-muscle cells and for contraction in muscle cells. Tpm1 undergoes AS regulation to generate muscle versus non-muscle TPM1 protein isoforms with distinct physiological functions. It is unclear which full-length Tpm1 isoforms are produced via AS and how they are regulated during heart development. To address these, we utilized nanopore long-read cDNA sequencing without gene-specific PCR amplification. In rat hearts, we identified full-length Tpm1 isoforms composed of distinct exons with specific exon linkages. We showed that Tpm1 undergoes AS transitions during embryonic heart development such that muscle-specific exons are connected generating predominantly muscle-specific Tpm1 isoforms in adult hearts. We found that the RNA-binding protein RBFOX2 controls AS of rat Tpm1 exon 6a, which is important for cooperative actin binding. Furthermore, RBFOX2 regulates Tpm1 AS of exon 6a antagonistically to the RNA-binding protein PTBP1. In sum, we defined full-length Tpm1 isoforms with different exon combinations that are tightly regulated during cardiac development and provided insights into the regulation of Tpm1 AS by RNA-binding proteins. Our results demonstrate that nanopore sequencing is an excellent tool to determine full-length AS variants of muscle-enriched genes.  相似文献   

5.
The 97-kDa valosin-containing protein (p97 or VCP) is a type-II AAA ( ATPases associated with a variety of activities) ATPases, which are characterized by possessing two conserved ATPase domains. VCP forms a stable homo-hexameric structure, and this two-tier ring-shaped complex acts as a molecular chaperone that mediates many seemingly unrelated cellular activities. The involvement of VCP in the ubiquitin-proteasome degradation pathway and the identification of VCP cofactors provided us important clues to the understanding of how this molecular chaperone works. In this review, we summarize the reported biological functions of VCP and explore the molecular mechanisms underlying the diverse cellular functions. We discuss the structural and biochemical studies, and elucidate how this sophisticated enzymatic machine converts chemical energy into the mechanical forces required for the chaperone activity.  相似文献   

6.
We integratively assessed the function of alternative versions of a region near the N terminus of Drosophila muscle myosin heavy chain (encoded by exon 3a or 3b). We exchanged the alternative exon 3 regions between an embryonic isoform and the indirect flight muscle isoform. Each chimeric myosin was expressed in Drosophila indirect flight muscle, in the absence of other myosin isoforms, allowing for purified protein analysis and whole organism locomotory studies. The flight muscle isoform generates higher in vitro actin sliding velocity and solution ATPase rates than the embryonic isoform. Exchanging the embryonic exon 3 region into the flight muscle isoform decreased ATPase rates to embryonic levels but did not affect actin sliding velocity or flight muscle ultrastructure. Interestingly, this swap only slightly impaired flight ability. Exchanging the flight muscle-specific exon 3 region into the embryonic isoform increased actin sliding velocity 3-fold and improved indirect flight muscle ultrastructure integrity but failed to rescue the flightless phenotype of flies expressing embryonic myosin. These results suggest that the two structural versions of the exon 3 domain independently influence the kinetics of at least two steps of the actomyosin cross-bridge cycle.  相似文献   

7.
Cellular functions of the essential, ubiquitin-selective AAA ATPase p97/valosin-containing protein (VCP) are controlled by regulatory cofactors determining substrate specificity and fate. Most cofactors bind p97 through a ubiquitin regulatory X (UBX) or UBX-like domain or linear sequence motifs, including the hitherto ill defined p97/VCP-interacting motif (VIM). Here, we present the new, minimal consensus sequence RX(5)AAX(2)R as a general definition of the VIM that unites a novel family of known and putative p97 cofactors, among them UBXD1 and ZNF744/ANKZF1. We demonstrate that this minimal VIM consensus sequence is necessary and sufficient for p97 binding. Using NMR chemical shift mapping, we identified several residues of the p97 N-terminal domain (N domain) that are critical for VIM binding. Importantly, we show that cellular stress resistance conferred by the yeast VIM-containing cofactor Vms1 depends on the physical interaction between its VIM and the critical N domain residues of the yeast p97 homolog, Cdc48. Thus, the VIM-N domain interaction characterized in this study is required for the physiological function of Vms1 and most likely other members of the newly defined VIM family of cofactors.  相似文献   

8.
9.
The p97/VCP ATPase complex facilitates the extraction and degradation of ubiquitinated proteins from larger structures. We therefore studied if p97 participates to the rapid degradation of myofibrillar proteins during muscle atrophy. Electroporation of a dominant negative p97 (DNp97), but not the WT, into mouse muscle reduced fibre atrophy caused by denervation and food deprivation. DNp97 (acting as a substrate-trap) became associated with specific myofibrillar proteins and its cofactors, Ufd1 and p47, and caused accumulation of ubiquitinated components of thin and thick filaments, which suggests a role for p97 in extracting ubiquitinated proteins from myofibrils. DNp97 expression in myotubes reduced overall proteolysis by proteasomes and lysosomes and blocked the accelerated proteolysis induced by FoxO3, which is essential for atrophy. Expression of p97, Ufd1 and p47 increases following denervation, at times when myofibrils are rapidly degraded. Surprisingly, p97 inhibition, though toxic to most cells, caused rapid growth of myotubes (without enhancing protein synthesis) and hypertrophy of adult muscles. Thus, p97 restrains post-natal muscle growth, and during atrophy, is essential for the accelerated degradation of most muscle proteins.  相似文献   

10.
11.
含缬酪肽蛋白(VCP)即p97,是一种广泛存在的膜结合糖蛋白,在细胞活性中有着广泛的功能,作为类似分子伴侣在内质网相关蛋白降解及细胞周期调控中起重要作用。在这些细胞过程中,p97与其辅因子UFD1-NPL4结合,把多泛素化错误折叠的蛋白通过蛋白酶进行降解。新近研究发现,p97能够独立于UFD1-NPL4,参与细胞质内运输和自噬。有趣的是,这些途径通过溶酶体也能够使蛋白降解。我们就近年来VCP/p97在细胞内吞作用和自噬中的作用进行综述。  相似文献   

12.
The AAA (ATPase associated with various cellular activities) ATPase p97, also referred to as valosin-containing protein (VCP), mediates essential cellular processes, including ubiquitin-dependent protein degradation, and has been linked to several human proteinopathies. p97 interacts with multiple cofactors via its N-terminal (p97N) domain, a subset of which contain the VCP-interacting motif (VIM). We have determined the crystal structure of the p97N domain in complex with the VIM of the ubiquitin E3 ligase gp78 at 1.8 ? resolution. The α-helical VIM peptide binds into a groove located in between the two subdomains of the p97N domain. Interaction studies of several VIM proteins reveal that these cofactors display dramatically different affinities, ranging from high affinity interactions characterized by dissociation constants of ~20 nm for gp78 and ANKZF1 to only weak binding in our assays. The contribution of individual p97 residues to VIM binding was analyzed, revealing that identical substitutions do not affect all cofactors in the same way. Taken together, the biochemical and structural studies define the framework for recognition of VIM-containing cofactors by p97. Of particular interest to the regulation of p97 by its cofactors, our structure reveals that the bound α-helical peptides of VIM-containing cofactors overlap with the binding site for cofactors containing the ubiquitin regulatory X (UBX) domain present in the UBX protein family or the ubiquitin-like domain of NPL4 as further corroborated by biochemical data. These results extend the concept that competitive binding is a crucial determinant in p97-cofactor interactions.  相似文献   

13.
The AAA-ATPase p97/VCP facilitates protein dislocation during endoplasmic reticulum-associated degradation (ERAD). To understand how p97/VCP accomplishes dislocation, a series of point mutants was made to disrupt distinguishing structural features of its central pore. Mutants were evaluated in vitro for ATPase activity in the presence and absence of synaptotagmin I (SytI) and in vivo for ability to process the ERAD substrate TCRalpha. Synaptotagmin induces a 4-fold increase in the ATPase activity of wild-type p97/VCP (p97/VCP(wt)), but not in mutants that showed an ERAD impairment. Mass spectrometry of crosslinked synaptotagmin . p97/VCP revealed interactions near Trp551 and Phe552. Additionally, His317, Arg586, and Arg599 were found to be essential for substrate interaction and ERAD. Except His317, which serves as an interaction nexus, these residues all lie on prominent loops within the D2 pore. These data support a model of substrate dislocation facilitated by interactions with p97/VCP's D2 pore.  相似文献   

14.
Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.  相似文献   

15.
Alternative splicing of cardiac troponin T (cTNT) exon 5 undergoes a developmentally regulated switch such that exon inclusion predominates in embryonic, but not adult, striated muscle. We previously described four muscle-specific splicing enhancers (MSEs) within introns flanking exon 5 in chicken cTNT that are both necessary and sufficient for exon inclusion in embryonic muscle. We also demonstrated that CUG-binding protein (CUG-BP) binds a conserved CUG motif within a human cTNT MSE and positively regulates MSE-dependent exon inclusion. Here we report that CUG-BP is one of a novel family of developmentally regulated RNA binding proteins that includes embryonically lethal abnormal vision-type RNA binding protein 3 (ETR-3). This family, which we call CELF proteins for CUG-BP- and ETR-3-like factors, specifically bound MSE-containing RNAs in vitro and activated MSE-dependent exon inclusion of cTNT minigenes in vivo. The expression of two CELF proteins is highly restricted to brain. CUG-BP, ETR-3, and CELF4 are more broadly expressed, and expression is developmentally regulated in striated muscle and brain. Changes in the level of expression and isoforms of ETR-3 in two different developmental systems correlated with regulated changes in cTNT splicing. A switch from cTNT exon skipping to inclusion tightly correlated with induction of ETR-3 protein expression during differentiation of C2C12 myoblasts. During heart development, the switch in cTNT splicing correlated with a transition in ETR-3 protein isoforms. We propose that ETR-3 is a major regulator of cTNT alternative splicing and that the CELF family plays an important regulatory role in cell-specific alternative splicing during normal development and disease.  相似文献   

16.
17.

Background

Retrodifferentiation and regained proliferative capacity of growth-arrested human leukemic cells after monocyte-like differentiation requires proteolytic activities together with distinct regulatory factors. The AAA ATPase valosin-containing protein (VCP/p97) contributes to protein degradation and cell cycle regulation, respectively, and it was of interest to study a possible role of VCP/p97 during this myelomonocytic differentiation and retrodifferentiation.

Results

Separation of autonomously proliferating human U937 myeloid leukemia cells by centrifugal elutriation demonstrated unaltered VCP/p97 expression levels throughout distinct phases of the cell cycle. However, phorbol ester-induced G0/G1 cell cycle arrest in differentiating human U937 leukemia cells was associated with a significantly increased protein and mRNA amount of this AAA ATPase. These elevated VCP/p97 levels progressively decreased again when growth-arrested U937 cells entered a retrodifferentiation program and returned to the tumorigenic phenotype. Whereas VCP/p97 was observed predominantly in the cytosol of U937 tumor and retrodifferentiated cells, a significant nuclear accumulation appeared during differentiation and G0/G1 growth arrest. Analysis of subcellular compartments by immunoprecipitations and 2D Western blots substantiated these findings and revealed furthermore a tyrosine-specific phosphorylation of VCP/p97 in the cytosolic but not in the nuclear fractions. These altered tyrosine phosphorylation levels, according to distinct subcellular distributions, indicated a possible functional involvement of VCP/p97 in the leukemic differentiation process. Indeed, a down-modulation of VCP/p97 protein by siRNA revealed a reduced expression of differentiation-associated genes in subsequent DNA microarray analysis. Moreover, DNA-binding and proliferation-associated genes, which are down-regulated during differentiation of the leukemic cells, demonstrated elevated levels in the VCP/p97 siRNA transfectants.

Conclusion

The findings demonstrated that monocytic differentiation and G0/G1 growth arrest in human U937 leukemia cells was accompanied by an increase in VCP/p97 expression and a distinct subcellular distribution to be reverted during retrodifferentiation. Together with a down-modulation of VCP/p97 by siRNA, these results suggested an association of this AAA ATPase in the differentiation/retrodifferentiation program.  相似文献   

18.
19.
Flaviviruses are human pathogens that can cause severe diseases, such as dengue fever and Japanese encephalitis, which can lead to death. Valosin-containing protein (VCP)/p97, a cellular ATPase associated with diverse cellular activities (AAA-ATPase), is reported to have multiple roles in flavivirus replication. Nevertheless, the importance of each role still has not been addressed. In this study, the functions of 17 VCP mutants that are reportedly unable to interact with the VCP cofactors were validated using the short-interfering RNA rescue experiments. Our findings of this study suggested that VCP exerts its functions in replication of the Japanese encephalitis virus by interacting with the VCP cofactor nuclear protein localization 4 (NPL4). We show that the depletion of NPL4 impaired the early stage of viral genome replication. In addition, we demonstrate that the direct interaction between NPL4 and viral nonstructural protein (NS4B) is critical for the translocation of NS4B to the sites of viral replication. Finally, we found that Japanese encephalitis virus and dengue virus promoted stress granule formation only in VCP inhibitor-treated cells and the expression of NS4B or VCP attenuated stress granule formation mediated by protein kinase R, which is generally known to be activated by type I interferon and viral genome RNA. These results suggest that the NS4B-mediated recruitment of VCP to the virus replication site inhibits cellular stress responses and consequently facilitates viral protein synthesis in the flavivirus-infected cells.  相似文献   

20.
Drosophila expresses several muscle myosin isoforms from a single gene by alternatively splicing six of the 19 exons. Here we investigate exon 7, which codes for a region in the upper 50 kDa domain near the nucleotide-binding pocket. This region is of interest because it is also the place where a large insert is found in myosin VI and where several cardiomyopathy mutations have been identified in human cardiac myosin. We expressed and purified chimeric muscle myosins from Drosophila, each varying at exon 7. Two chimeras exchanged the entire exon 7 domain between the indirect flight muscle (IFI, normally containing exon 7d) and embryonic body wall muscle (EMB, normally containing exon 7a) isoforms to create IFI-7a and EMB-7d. The second two chimeras replaced each half of the exon 7a domain in EMB with the corresponding portion of exon 7d to create EMB-7a/7d and EMB-7d/7a. Transient kinetic studies of the motor domain from these myosin isoforms revealed changes in several kinetic parameters between the IFI or EMB isoforms and the chimeras. Of significance were changes in nucleotide binding, which differed in the presence and absence of actin, consistent with a model in which the exon 7 domain is part of the communication pathway between the nucleotide and actin-binding sites. Homology models of the structures suggest how the exon 7 domain might modulate this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号