首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ye ZJ  Yuan ML  Zhou Q  Du RH  Yang WB  Xiong XZ  Zhang JC  Wu C  Qin SM  Shi HZ 《PloS one》2012,7(2):e31710
Newly discovered IL-9–producing CD4+ helper T cells (Th9 cells) have been reported to contribute to tissue inflammation and immune responses, however, differentiation and immune regulation of Th9 cells in tuberculosis remain unknown. In the present study, our data showed that increased Th9 cells with the phenotype of effector memory cells were found to be in tuberculous pleural effusion as compared with blood. TGF-β was essential for Th9 cell differentiation from naïve CD4+ T cells stimulated with PMA and ionomycin in vitro for 5 h, and addition of IL-1β, IL-4 or IL-6 further augmented Th9 cell differentiation. Tuberculous pleural effusion and supernatants of cultured pleural mesothelial cells were chemotactic for Th9 cells, and this activity was partly blocked by anti-CCL20 antibody. IL-9 promoted the pleural mesothelial cell repairing and inhibited IFN-γ-induced pleural mesothelial cell apoptosis. Moreover, pleural mesothelial cells promoted Th9 cell differentiation by presenting antigen. Collectively, these data provide new information concerning Th9 cells, in particular the collaborative immune regulation between Th9 cells and pleural mesothelial cells in human M. tuberculosis infection. In particular, pleural mesothelial cells were able to function as antigen-presenting cells to stimulate Th9 cell differentiation.  相似文献   

2.
Ong CT  Sedy JR  Murphy KM  Kopan R 《PloS one》2008,3(7):e2823
Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.  相似文献   

3.
Subburaju S  Benes FM 《PloS one》2012,7(3):e33352
Recent studies of the hippocampus have suggested that a network of genes is associated with the regulation of the GAD67 (GAD1) expression and may play a role in γ-amino butyric acid (GABA) dysfunction in schizophrenia (SZ) and bipolar disorder (BD). To obtain a more detailed understanding of how GAD67 regulation may result in GABAergic dysfunction, we have developed an in vitro model in which GABA cells are differentiated from the hippocampal precursor cell line, HiB5. Growth factors, such as PDGF, and BDNF, regulate the GABA phenotype by inducing the expression of GAD67 and stimulating the growth of cellular processes, many with growth cones that form appositions with the cell bodies and processes of other GAD67-positive cells. These changes are associated with increased expression of acetylated tubulin, microtubule-associated protein 2 (MAP2) and the post-synaptic density protein 95 (PSD95). The addition of BDNF, together with PDGF, increases the levels of mRNA and protein for GAD67, as well as the high affinity GABA uptake protein, GAT1. These changes are associated with increased concentrations of GABA in the cytoplasm of “differentiated” HiB5 neurons. In the presence of Ca2+ and K+, newly synthesized GABA is released extracellularly. When the HiB5 cells appear to be fully differentiated, they also express GAD65, parvalbumin and calbindin, and GluR subtypes as well as HDAC1, DAXX, PAX5, Runx2, associated with GAD67 regulation. Overall, these results suggest that the HiB5 cells can differentiate into functionally mature GABA neurons in the presence of gene products that are associated with GAD67 regulation in the adult hippocampus.  相似文献   

4.

Background

Chronic Chagas disease presents several different clinical manifestations ranging from asymptomatic to severe cardiac and/or digestive clinical forms. Several studies have demonstrated that immunoregulatory mechanisms are important processes for the control of the intense immune activity observed in the chronic phase. T cells play a critical role in parasite specific and non-specific immune response elicited by the host against Trypanosoma cruzi. Specifically, memory T cells, which are basically classified as central and effector memory cells, might have a distinct migratory activity, role and function during the human Chagas disease.

Methodology/Principal Findings

Based on the hypothesis that the disease severity in humans is correlated to the quality of immune responses against T. cruzi, we evaluated the memory profile of peripheral CD4+ and CD8+ T lymphocytes as well as its cytokine secretion before and after in vitro antigenic stimulation. We evaluated cellular response from non-infected individuals (NI), patients with indeterminate (IND) or cardiac (CARD) clinical forms of Chagas disease. The expression of CD45RA, CD45RO and CCR7 surface molecules was determined on CD4+ and CD8+ T lymphocytes; the pattern of intracellular cytokines (IFN-γ, IL-10) synthesized by naive and memory cells was determined by flow cytometry. Our results revealed that IND and CARD patients have relatively lower percentages of naive (CD45RAhigh) CD4+ and CD8+ T cells. However, statistical analysis of ex-vivo profiles of CD4+ T cells showed that IND have lower percentage of CD45RAhigh in relation to non-infected individuals, but not in relation to CARD. Elevated percentages of memory (CD45ROhigh) CD4+ T cells were also demonstrated in infected individuals, although statistically significant differences were only observed between IND and NI groups. Furthermore, when we analyzed the profile of secreted cytokines, we observed that CARD patients presented a significantly higher percentage of CD8+CD45RAhigh IFN-γ-producing cells in control cultures and after antigen pulsing with soluble epimastigote antigens.

Conclusions

Based on a correlation between the frequency of IFN-γ producing CD8+ T cells in the T cell memory compartment and the chronic chagasic myocarditis, we propose that memory T cells can be involved in the induction of the development of the severe clinical forms of the Chagas disease by mechanisms modulated by IFN-γ. Furthermore, we showed that individuals from IND group presented more TCM CD4+ T cells, which may induce a regulatory mechanism to protect the host against the exacerbated inflammatory response elicited by the infection.  相似文献   

5.
The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4+ T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4+ T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4+ T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2ΔCD4Cre) were infected with the protozoan parasite Leishmania major. N1N2ΔCD4Cre mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4+ T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4+ T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.  相似文献   

6.

Background

Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB.

Methods

Peripheral blood mononuclear cells (PBMC) from children and adolescents (1–17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4+ CD45RO+ memory T cells.

Results

CD4+ CD45RO+ T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSElowCD4+CD45RO+) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4+ T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells.

Conclusions

Our data suggest granulysin expression by CD4+ memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence.  相似文献   

7.
T cells have been classified as belonging to the Th1 or Th2 subsets according to the production of defining cytokines such as IFN-γ and IL-4. The discovery of the Th17 lineage and regulatory T cells shifted the simple concept of the Th1/Th2 balance into a 4-way mechanistic pathway of local and systemic immunological activity. Clinically, the blockage of cytokine signals or non-specific suppression of cytokine predominance by immunosuppressants is the first-line treatment for inflammatory T cell-mediated disorders. Cyclosporine A (CsA) and Tacrolimus (Tac) are commonly used immunosuppressants for the treatment of autoimmune disease, psoriasis, and atopic disorders. Many studies have shown that these compounds suppress the activation of the calcium-dependent phosphatase calcineurin, thereby inhibiting T-cell activation. Although CsA and Tac are frequently utilized, their pharmacological mechanisms have not yet been fully elucidated.In the present study, we focused on the effects of CsA and Tac on cytokine secretion from purified human memory CD4+T cells and the differentiation of naïve T cells into cytokine-producing memory T cells. CsA or Tac significantly inhibited IFN-γ, IL-4, and IL-17 production from memory T cells. These compounds also inhibited T cell differentiation into the Th1, Th2, and Th17 subsets, even when used at a low concentration. This study provided critical information regarding the clinical efficacies of CsA and Tac as immunosuppressants.  相似文献   

8.
9.
Cdc42 of the Rho GTPase family has been implicated in cell actin organization, proliferation, survival, and migration but its physiological role is likely cell-type specific. By a T cell-specific deletion of Cdc42 in mouse, we have recently shown that Cdc42 maintains naïve T cell homeostasis through promoting cell survival and suppressing T cell activation. Here we have further investigated the involvement of Cdc42 in multiple stages of T cell differentiation. We found that in Cdc42−/− thymus, positive selection of CD4+CD8+ double-positive thymocytes was defective, CD4+ and CD8+ single-positive thymocytes were impaired in migration and showed an increase in cell apoptosis triggered by anti-CD3/-CD28 antibodies, and thymocytes were hyporesponsive to anti-CD3/-CD28-induced cell proliferation and hyperresponsive to anti-CD3/-CD28-stimulated MAP kinase activation. At the periphery, Cdc42-deficient naive T cells displayed an impaired actin polymerization and TCR clustering during the formation of mature immunological synapse, and showed an enhanced differentiation to Th1 and CD8+ effector and memory cells in vitro and in vivo. Finally, Cdc42−/− mice exhibited exacerbated liver damage in an induced autoimmune disease model. Collectively, these data establish that Cdc42 is critically involved in thymopoiesis and plays a restrictive role in effector and memory T cell differentiation and autoimmunity.  相似文献   

10.
Zhou X  Xia Z  Lan Q  Wang J  Su W  Han YP  Fan H  Liu Z  Stohl W  Zheng SG 《PloS one》2011,6(8):e23629

Background

BAFF, in addition to promoting B cell survival and differentiation, may affect T cells. The objective of this study was to determine the effect of BAFF on Th17 cell generation and its ramifications for the Th17 cell-driven disease, EAE.

Methodology/Principal Findings

Th17 cells were increased in BAFF-Tg B6 (B6.BTg) mice and decreased in B6.Baff−/− mice. Th17 cells in B6.Baff−/− mice bearing a BAFF Tg (B6.Baff−/−.BTg mice) were identical to those in B6.BTg mice, indicating that membrane BAFF is dispensable for Th17 cell generation as long as soluble BAFF is plentiful. In T + non-T cell criss-cross co-cultures, Th17 cell generation was greatest in cultures containing B6.BTg T cells and lowest in cultures containing B6.Baff−/− T cells, regardless of the source of non-T cells. In cultures containing only T cells, Th17 cell generation followed an identical pattern. CD4+ cell expression of CD126 (IL-6R α chain) was increased in B6.BTg mice and decreased in B6.Baff−/− mice, and activation of STAT3 following stimulation with IL-6 + TGF-β was also greatest in B6.BTg cells and lowest in B6.Baff−/− cells. EAE was clinically and pathologically most severe in B6.BTg mice and least severe in B6.Baff−/− mice and correlated with MOG35–55 peptide-induced Th17 cell responses.

Conclusions/Significance

Collectively, these findings document a contribution of BAFF to pathogenic Th17 cell responses and suggest that BAFF antagonism may be efficacious in Th17 cell-driven diseases.  相似文献   

11.

Background

In type 1 diabetes (T1D), a prototypic autoimmune disease, effector T cells destroy beta cells. Normally, CD4+CD25+high, or natural regulatory T cells (Tregs), counter this assault. In autoimmunity, the failure to suppress CD4+CD25low T cells is important for disease development. However, both Treg dysfunction and hyperactive responder T-cell proliferation contribute to disease.

Methods/Principal Findings

We investigated human CD4+CD25low T cells and compared them to CD4+CD25- T cells in otherwise equivalent in vitro proliferative conditions. We then asked whether these differences in suppression are exacerbated in T1D. In both single and co-culture with Tregs, the CD4+CD25low T cells divided more rapidly than CD4+CD25- T cells, which manifests as increased proliferation/reduced suppression. Time-course experiments showed that this difference could be explained by higher IL-2 production from CD4+CD25low compared to CD4+CD25- T cells. There was also a significant increase in CD4+CD25low T-cell proliferation compared to CD4+CD25- T cells during suppression assays from RO T1D and at-risk subjects (n = 28, p = 0.015 and p = 0.024 respectively).

Conclusions/Significance

The in vitro dual suppression assays proposed here could highlight the impaired sensitivity of certain responder T cells to the suppressive effect of Tregs in human autoimmune diseases.  相似文献   

12.
Elimination of autoreactive CD4+ T cells through the death receptor Fas/CD95 is an important mechanism of immunological self-tolerance. Fas deficiency results in systemic autoimmunity, yet does not affect the kinetics of T-cell responses to acute antigen exposure or infection. Here we show that Fas and TCR-induced apoptosis are largely restricted to CD4+ T cells with an effector memory phenotype (effector memory T cells (TEM)), whereas central memory and activated naïve CD4+ T cells are relatively resistant to both. Sensitivity of TEM to Fas-induced apoptosis depends on enrichment of Fas in lipid raft microdomains, and is linked to more efficient formation of the Fas death-inducing signaling complex. These results explain how Fas can cull T cells reactive against self-antigens without affecting acute immune responses. This work also identifies Fas-induced apoptosis as a possible immunotherapeutic strategy to eliminate TEM linked to the pathogenesis of a number of autoimmune diseases.  相似文献   

13.
Recent data suggest that Nef-mediated downmodulation of TCR-CD3 may protect SIVsmm-infected sooty mangabeys (SMs) against the loss of CD4+ T cells. However, the mechanisms underlying this protective effect remain unclear. To further assess the role of Nef in nonpathogenic SIV infection, we cloned nef alleles from 11 SIVsmm-infected SMs with high (>500) and 15 animals with low (<500) CD4+ T-cells/µl in bulk into proviral HIV-1 IRES/eGFP constructs and analyzed their effects on the phenotype, activation, and apoptosis of primary T cells. We found that not only efficient Nef-mediated downmodulation of TCR-CD3 but also of MHC-I correlated with preserved CD4+ T cell counts, as well as with high numbers of Ki67+CD4+ and CD8+CD28+ T cells and reduced CD95 expression by CD4+ T cells. Moreover, effective MHC-I downregulation correlated with low proportions of effector and high percentages of naïve and memory CD8+ T cells. We found that T cells infected with viruses expressing Nef alleles from the CD4low SM group expressed significantly higher levels of the CD69, interleukin (IL)-2 and programmed death (PD)-1 receptors than those expressing Nefs from the CD4high group. SIVsmm Nef alleles that were less active in downmodulating TCR-CD3 were also less potent in suppressing the activation of virally infected T cells and subsequent cell death. However, only nef alleles from a single animal with very low CD4+ T cell counts rendered T cells hyper-responsive to activation, similar to those of HIV-1. Our data suggest that Nef may protect the natural hosts of SIV against the loss of CD4+ T cells by at least two mechanisms: (i) downmodulation of TCR-CD3 to prevent activation-induced cell death and to suppress the induction of PD-1 that may impair T cell function and survival, and (ii) downmodulation of MHC-I to reduce CTL lysis of virally infected CD4+ T cells and/or bystander CD8+ T cell activation.  相似文献   

14.
Glutamate decarboxylase (GAD) produces GABA, the main inhibitory neurotransmitter in adult mammalian brain. The physical characteristics of GAD were studied using mass spectrometry and partial protein digests. The N-termini of the two main isoforms, GAD65 and GAD67, were processed by removal of the initial methionine residues and acetylation of the penultimate alanines. Native recombinant GAD65 and GAD67 exist as homodimers that can be dissociated with non-reducing methods, indicating that homodimerization does not involve intermolecular disulfide bonds. Truncation of the N-terminal segment with trypsin digestion did not affect homodimerization but increased activity by decreasing the Km of GAD67 and increasing the Vmax of both isoforms. Of the 15 cysteines in GAD65, the six found in the N-terminal segment can form disulfide bonds and of the 13 cysteines in GAD67, cysteines 32 and 38 can form a disulfide bond. The in vitro formation of disulfide bonds in the N-termini, and the removal of the termini with relatively low amounts of trypsin, indicate that the N-terminal segments of GAD65 and GAD67 are exposed and flexible. The formation of a disulfide bridge between cysteines 30 and 45 of GAD65 suggests that alteration of normal redox conditions could affect GAD targeting.  相似文献   

15.
16.
McComb S  Mulligan R  Sad S 《PloS one》2010,5(12):e15328

Background

CD8+ T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8+ T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8+ T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8+ T cell responses has yet to be examined.

Methods and Findings

We have evaluated the activity of caspase-3, a key downstream inducer of apoptosis, throughout the entirety of a CD8+ T cell response. We utilized two infection models that differ in the intensity, onset and duration of antigen-presentation and inflammation. Expression of cleaved caspase-3 in antigen specific CD8+ T cells was coupled to the timing and strength of antigen presentation in lymphoid organs. We also observed coordinated activation of additional canonical apoptotic markers, including phosphatidylserine exposure. Limiting dilution analysis directly showed that in the presence of IL7, very little cell death occurred in both caspase-3hi and caspase-3low CD8+ T cells. The expression of active caspase-3 peaked before effector phenotype (CD62Llow) CD8+ T cells emerged, and was undetectable in effector-phenotype cells. In addition, OVA-specific CD8+ cells remained active caspase-3low throughout the contraction phase.

Conclusions

Our results specifically implicate antigen and not inflammation in driving activation of apoptotic mechanisms without cell death in proliferating CD8+ T cells. Furthermore, the contraction of CD8+ T cell response following expansion is likely not mediated by the key downstream apoptosis inducer, caspase-3.  相似文献   

17.
Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes.  相似文献   

18.
Diabet. Med. 29, 1272-1278 (2012) ABSTRACT: Aim The balance between T helper cell subsets is an important regulator of the immune system and is often examined after immune therapies. We aimed to study the immunomodulatory effect of glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) in children with Type?1 diabetes, focusing on chemokines and their receptors. Methods Blood samples were collected from 70 children with Type?1 diabetes included in a phase?II clinical trial with GAD-alum. Expression of CC chemokine receptor?5 (CCR5) and CCR4 was analysed on CD4+ and CD8+ lymphocytes after in vitro stimulation with GAD(65) using flow cytometry, and secretion of the chemokines CCL2, CCL3 and CCL4 was detected in peripheral blood mononuclear cell supernatants with Luminex. Results Expression of Th1-associated CCR5 was down-regulated following antigen challenge, together with an increased CCR4/CCR5 ratio and CCL2 secretion in GAD-alum-treated patients, but not in the placebo group. Conclusion Our results suggest that GAD-alum treatment has induced a favourable immune modulation associated with decreased Th1/Tc1 phenotypes upon antigen re-challenge, which may be of importance for regulating GAD(65) immunity.  相似文献   

19.
Epstein-Barr virus (EBV), a lymphomagenic human herpesvirus, colonises the host through polyclonal B cell-growth-transforming infections yet establishes persistence only in IgD+ CD27+ non-switched memory (NSM) and IgD CD27+ switched memory (SM) B cells, not in IgD+ CD27 naïve (N) cells. How this selectivity is achieved remains poorly understood. Here we show that purified N, NSM and SM cell preparations are equally transformable in vitro to lymphoblastoid cells lines (LCLs) that, despite upregulating the activation-induced cytidine deaminase (AID) enzyme necessary for Ig isotype switching and Ig gene hypermutation, still retain the surface Ig phenotype of their parental cells. However, both N- and NSM-derived lines remain inducible to Ig isotype switching by surrogate T cell signals. More importantly, IgH gene analysis of N cell infections revealed two features quite distinct from parallel mitogen-activated cultures. Firstly, following 4 weeks of EBV-driven polyclonal proliferation, individual clonotypes then become increasingly dominant; secondly, in around 35% cases these clonotypes carry Ig gene mutations which both resemble AID products and, when analysed in prospectively-harvested cultures, appear to have arisen by sequence diversification in vitro. Thus EBV infection per se can drive at least some naïve B cells to acquire Ig memory genotypes; furthermore, such cells are often favoured during an LCL''s evolution to monoclonality. Extrapolating to viral infections in vivo, these findings could help to explain how EBV-infected cells become restricted to memory B cell subsets and why EBV-driven lymphoproliferative lesions, in primary infection and/or immunocompromised settings, so frequently involve clones with memory genotypes.  相似文献   

20.

Background

To prevent harmful autoimmunity most immune responses to self proteins are controlled by central and peripheral tolerance. T cells specific for a limited set of self-proteins such as human heat shock protein 60 (HSP60) may contribute to peripheral tolerance. It is not known whether HSP60-specific T cells are present at birth and thus may play a role in neonatal tolerance. We studied whether self-HSP60 reactive T cells are present in cord blood, and if so, what phenotype these cells have.

Methodology/Principal Findings

Cord blood mononuclear cells (CBMC) of healthy, full term neonates (n = 21), were cultured with HSP60 and Tetanus Toxoid (TT) to study antigen specific proliferation, cytokine secretion and up-regulation of surface markers. The functional capacity of HSP60-induced T cells was determined with in vitro suppression assays. Stimulation of CBMC with HSP60 led to CD4+ T cell proliferation and the production of various cytokines, most notably IL-10, Interferon-gamma, and IL-6. HSP60-induced T cells expressed FOXP3 and suppressed effector T cell responses in vitro.

Conclusion

Self-reactive HSP60 specific T cells are already present at birth. Upon stimulation with self-HSP60 these cells proliferate, produce cytokines and express FOXP3. These cells function as suppressor cells in vitro and thus they may be involved in the regulation of neonatal immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号